clincolnoz's picture
full precision weights
4fb0ffe
|
raw
history blame
4.3 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: final-lr2e-5-bs16-fullprecision
    results: []

final-lr2e-5-bs16-fullprecision

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4633
  • F1 Macro: 0.8276
  • F1 Weighted: 0.8754
  • F1: 0.7348
  • Accuracy: 0.8775
  • Confusion Matrix: [[2831 199] [ 291 679]]
  • Confusion Matrix Norm: [[0.93432343 0.06567657] [0.3 0.7 ]]
  • Classification Report: precision recall f1-score support 0 0.906791 0.934323 0.920351 3030.0000

1 0.773349 0.700000 0.734848 970.0000 accuracy 0.877500 0.877500 0.877500 0.8775 macro avg 0.840070 0.817162 0.827600 4000.0000 weighted avg 0.874431 0.877500 0.875367 4000.0000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 12345
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Weighted F1 Accuracy Confusion Matrix Confusion Matrix Norm Classification Report
0.3362 1.0 1000 0.3034 0.8182 0.8693 0.7191 0.8722 [[2835 195]
[ 316 654]] [[0.93564356 0.06435644]
[0.3257732 0.6742268 ]] precision recall f1-score support
0 0.899714 0.935644 0.917327 3030.00000
1 0.770318 0.674227 0.719076 970.00000
accuracy 0.872250 0.872250 0.872250 0.87225
macro avg 0.835016 0.804935 0.818202 4000.00000
weighted avg 0.868336 0.872250 0.869251 4000.00000
0.2352 2.0 2000 0.3730 0.8270 0.8730 0.7374 0.8732 [[2781 249]
[ 258 712]] [[0.91782178 0.08217822]
[0.26597938 0.73402062]] precision recall f1-score support
0 0.915104 0.917822 0.916461 3030.00000
1 0.740895 0.734021 0.737442 970.00000
accuracy 0.873250 0.873250 0.873250 0.87325
macro avg 0.827999 0.825921 0.826951 4000.00000
weighted avg 0.872858 0.873250 0.873049 4000.00000
0.1566 3.0 3000 0.4633 0.8276 0.8754 0.7348 0.8775 [[2831 199]
[ 291 679]] [[0.93432343 0.06567657]
[0.3 0.7 ]] precision recall f1-score support
0 0.906791 0.934323 0.920351 3030.0000
1 0.773349 0.700000 0.734848 970.0000
accuracy 0.877500 0.877500 0.877500 0.8775
macro avg 0.840070 0.817162 0.827600 4000.0000
weighted avg 0.874431 0.877500 0.875367 4000.0000

Framework versions

  • Transformers 4.27.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.9.0
  • Tokenizers 0.13.2