clincolnoz commited on
Commit
724dbac
1 Parent(s): 4253d2c

v0.50 state at 50 epochs

Browse files
Files changed (7) hide show
  1. README.md +46 -46
  2. optimizer.pt +1 -1
  3. pytorch_model.bin +1 -1
  4. rng_state.pth +1 -1
  5. scaler.pt +1 -1
  6. scheduler.pt +1 -1
  7. trainer_state.json +0 -0
README.md CHANGED
@@ -84,23 +84,23 @@ You can use this model directly with a pipeline for masked language modeling:
84
  >>> unmasker = pipeline('fill-mask', model='clincolnoz/MoreSexistBERT')
85
  >>> unmasker("Hello I'm a [MASK] model.")
86
 
87
- [{'score': 0.299740731716156,
88
  'token': 3287,
89
  'token_str': 'male',
90
  'sequence': "hello i'm a male model."},
91
- {'score': 0.21594786643981934,
92
- 'token': 4827,
93
- 'token_str': 'fashion',
94
- 'sequence': "hello i'm a fashion model."},
95
- {'score': 0.06590863317251205,
96
- 'token': 10516,
97
- 'token_str': 'fitness',
98
- 'sequence': "hello i'm a fitness model."},
99
- {'score': 0.04644616320729256,
100
  'token': 3565,
101
  'token_str': 'super',
102
  'sequence': "hello i'm a super model."},
103
- {'score': 0.03925987705588341,
 
 
 
 
 
 
 
 
104
  'token': 9271,
105
  'token_str': 'runway',
106
  'sequence': "hello i'm a runway model."}]
@@ -112,11 +112,11 @@ Here is how to use this model to get the features of a given text in PyTorch:
112
  from transformers import BertTokenizer, BertModel
113
  tokenizer = BertTokenizer.from_pretrained(
114
  'clincolnoz/MoreSexistBERT',
115
- revision='v0.40' # tag name, or branch name, or commit hash
116
  )
117
  model = BertModel.from_pretrained(
118
  'clincolnoz/MoreSexistBERT',
119
- revision='v0.40' # tag name, or branch name, or commit hash
120
  )
121
  text = "Replace me by any text you'd like."
122
  encoded_input = tokenizer(text, return_tensors='pt')
@@ -129,12 +129,12 @@ and in TensorFlow:
129
  from transformers import BertTokenizer, TFBertModel
130
  tokenizer = BertTokenizer.from_pretrained(
131
  'clincolnoz/MoreSexistBERT',
132
- revision='v0.40' # tag name, or branch name, or commit hash
133
  )
134
  model = TFBertModel.from_pretrained(
135
  'clincolnoz/MoreSexistBERT',
136
  from_pt=True,
137
- revision='v0.40' # tag name, or branch name, or commit hash
138
  )
139
  text = "Replace me by any text you'd like."
140
  encoded_input = tokenizer(text, return_tensors='tf')
@@ -151,49 +151,49 @@ neutral, this model can have biased predictions:
151
  >>> unmasker = pipeline('fill-mask', model='clincolnoz/MoreSexistBERT')
152
  >>> unmasker("The man worked as a [MASK].")
153
 
154
- [{'score': 0.1449829787015915,
155
- 'token': 15812,
156
- 'token_str': 'bartender',
157
- 'sequence': 'the man worked as a bartender.'},
158
- {'score': 0.09319758415222168,
159
  'token': 6821,
160
  'token_str': 'nurse',
161
  'sequence': 'the man worked as a nurse.'},
162
- {'score': 0.07738622277975082,
163
- 'token': 15893,
164
- 'token_str': 'mechanic',
165
- 'sequence': 'the man worked as a mechanic.'},
166
- {'score': 0.04416336491703987,
167
- 'token': 15610,
168
- 'token_str': 'waiter',
169
- 'sequence': 'the man worked as a waiter.'},
170
- {'score': 0.03337697684764862,
171
- 'token': 3836,
172
- 'token_str': 'teacher',
173
- 'sequence': 'the man worked as a teacher.'}]
 
 
 
 
174
 
175
  >>> unmasker("The woman worked as a [MASK].")
176
 
177
- [{'score': 0.17075787484645844,
 
 
 
 
178
  'token': 6821,
179
  'token_str': 'nurse',
180
  'sequence': 'the woman worked as a nurse.'},
181
- {'score': 0.12234838306903839,
 
 
 
 
182
  'token': 15812,
183
  'token_str': 'bartender',
184
  'sequence': 'the woman worked as a bartender.'},
185
- {'score': 0.10797207057476044,
186
- 'token': 19215,
187
- 'token_str': 'prostitute',
188
- 'sequence': 'the woman worked as a prostitute.'},
189
- {'score': 0.07464413344860077,
190
- 'token': 13877,
191
- 'token_str': 'waitress',
192
- 'sequence': 'the woman worked as a waitress.'},
193
- {'score': 0.06778198480606079,
194
- 'token': 5160,
195
- 'token_str': 'lawyer',
196
- 'sequence': 'the woman worked as a lawyer.'}]
197
  ```
198
 
199
  This bias may also affect all fine-tuned versions of this model.
 
84
  >>> unmasker = pipeline('fill-mask', model='clincolnoz/MoreSexistBERT')
85
  >>> unmasker("Hello I'm a [MASK] model.")
86
 
87
+ [{'score': 0.6423894762992859,
88
  'token': 3287,
89
  'token_str': 'male',
90
  'sequence': "hello i'm a male model."},
91
+ {'score': 0.10344322770833969,
 
 
 
 
 
 
 
 
92
  'token': 3565,
93
  'token_str': 'super',
94
  'sequence': "hello i'm a super model."},
95
+ {'score': 0.08034560084342957,
96
+ 'token': 10516,
97
+ 'token_str': 'fitness',
98
+ 'sequence': "hello i'm a fitness model."},
99
+ {'score': 0.02156146429479122,
100
+ 'token': 4827,
101
+ 'token_str': 'fashion',
102
+ 'sequence': "hello i'm a fashion model."},
103
+ {'score': 0.02025017701089382,
104
  'token': 9271,
105
  'token_str': 'runway',
106
  'sequence': "hello i'm a runway model."}]
 
112
  from transformers import BertTokenizer, BertModel
113
  tokenizer = BertTokenizer.from_pretrained(
114
  'clincolnoz/MoreSexistBERT',
115
+ revision='v0.50' # tag name, or branch name, or commit hash
116
  )
117
  model = BertModel.from_pretrained(
118
  'clincolnoz/MoreSexistBERT',
119
+ revision='v0.50' # tag name, or branch name, or commit hash
120
  )
121
  text = "Replace me by any text you'd like."
122
  encoded_input = tokenizer(text, return_tensors='pt')
 
129
  from transformers import BertTokenizer, TFBertModel
130
  tokenizer = BertTokenizer.from_pretrained(
131
  'clincolnoz/MoreSexistBERT',
132
+ revision='v0.50' # tag name, or branch name, or commit hash
133
  )
134
  model = TFBertModel.from_pretrained(
135
  'clincolnoz/MoreSexistBERT',
136
  from_pt=True,
137
+ revision='v0.50' # tag name, or branch name, or commit hash
138
  )
139
  text = "Replace me by any text you'd like."
140
  encoded_input = tokenizer(text, return_tensors='tf')
 
151
  >>> unmasker = pipeline('fill-mask', model='clincolnoz/MoreSexistBERT')
152
  >>> unmasker("The man worked as a [MASK].")
153
 
154
+ [{'score': 0.1301148682832718,
 
 
 
 
155
  'token': 6821,
156
  'token_str': 'nurse',
157
  'sequence': 'the man worked as a nurse.'},
158
+ {'score': 0.055000025779008865,
159
+ 'token': 2136,
160
+ 'token_str': 'team',
161
+ 'sequence': 'the man worked as a team.'},
162
+ {'score': 0.05250702425837517,
163
+ 'token': 16661,
164
+ 'token_str': 'technician',
165
+ 'sequence': 'the man worked as a technician.'},
166
+ {'score': 0.051831990480422974,
167
+ 'token': 10802,
168
+ 'token_str': 'provider',
169
+ 'sequence': 'the man worked as a provider.'},
170
+ {'score': 0.05052017420530319,
171
+ 'token': 15812,
172
+ 'token_str': 'bartender',
173
+ 'sequence': 'the man worked as a bartender.'}]
174
 
175
  >>> unmasker("The woman worked as a [MASK].")
176
 
177
+ [{'score': 0.3005842864513397,
178
+ 'token': 3187,
179
+ 'token_str': 'secretary',
180
+ 'sequence': 'the woman worked as a secretary.'},
181
+ {'score': 0.1173088550567627,
182
  'token': 6821,
183
  'token_str': 'nurse',
184
  'sequence': 'the woman worked as a nurse.'},
185
+ {'score': 0.11498373746871948,
186
+ 'token': 23775,
187
+ 'token_str': 'receptionist',
188
+ 'sequence': 'the woman worked as a receptionist.'},
189
+ {'score': 0.07685793191194534,
190
  'token': 15812,
191
  'token_str': 'bartender',
192
  'sequence': 'the woman worked as a bartender.'},
193
+ {'score': 0.05422172695398331,
194
+ 'token': 3836,
195
+ 'token_str': 'teacher',
196
+ 'sequence': 'the woman worked as a teacher.'}]
 
 
 
 
 
 
 
 
197
  ```
198
 
199
  This bias may also affect all fine-tuned versions of this model.
optimizer.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:200a3dfd9ef3845e3a68672c6ef571c579522357d47c35921626f6460e28fba1
3
  size 882547461
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bff4b3993d7c52ea42a0f33c52c1904b8a377971ddf0df08c8417ae519291b82
3
  size 882547461
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:583eb3fa7a95352341d63631eb0cca72ec0e0a03d296880ea69aa147417c1e99
3
  size 441287881
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7dd047be9aa2620f6eae54b9be8f9abeaaf1d992db85b0c5a1376d841d94d217
3
  size 441287881
rng_state.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7d12779265d9170f28e8e209031c867490f2bb475ad50078a6253ee7f5d84730
3
  size 14575
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ee70de4458f440e187b6a1053a6d34876bb8b34332ff23c7eff27dc32e5b64f
3
  size 14575
scaler.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7f0e55abf22d30e063e63a84e06db0e654406ff4c719ef93183de10325eeae97
3
  size 557
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f20999b695be56be3bd77fe5d42b97b06a29972c98458aea09892cd3d6edaca
3
  size 557
scheduler.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:985ddf5177904ec5f471f432905bdcd80ea3f58fcc0dba68b4213cb35e6cedbc
3
  size 627
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5828926c159e5c62824ea86f6b120fb29e2291965d28717109f272a4c7593723
3
  size 627
trainer_state.json CHANGED
The diff for this file is too large to render. See raw diff