clincolnoz commited on
Commit
4253d2c
1 Parent(s): 8e0373a

v0.40 state at 40 epochs

Browse files
Files changed (7) hide show
  1. README.md +50 -50
  2. optimizer.pt +1 -1
  3. pytorch_model.bin +1 -1
  4. rng_state.pth +1 -1
  5. scaler.pt +1 -1
  6. scheduler.pt +1 -1
  7. trainer_state.json +0 -0
README.md CHANGED
@@ -84,26 +84,26 @@ You can use this model directly with a pipeline for masked language modeling:
84
  >>> unmasker = pipeline('fill-mask', model='clincolnoz/MoreSexistBERT')
85
  >>> unmasker("Hello I'm a [MASK] model.")
86
 
87
- [{'score': 0.5894546508789062,
88
  'token': 3287,
89
  'token_str': 'male',
90
  'sequence': "hello i'm a male model."},
91
- {'score': 0.08041932433843613,
92
- 'token': 10516,
93
- 'token_str': 'fitness',
94
- 'sequence': "hello i'm a fitness model."},
95
- {'score': 0.06420593708753586,
96
  'token': 4827,
97
  'token_str': 'fashion',
98
  'sequence': "hello i'm a fashion model."},
99
- {'score': 0.018782181665301323,
100
- 'token': 2280,
101
- 'token_str': 'former',
102
- 'sequence': "hello i'm a former model."},
103
- {'score': 0.013872802257537842,
104
  'token': 3565,
105
  'token_str': 'super',
106
- 'sequence': "hello i'm a super model."}]
 
 
 
 
107
  ```
108
 
109
  Here is how to use this model to get the features of a given text in PyTorch:
@@ -112,11 +112,11 @@ Here is how to use this model to get the features of a given text in PyTorch:
112
  from transformers import BertTokenizer, BertModel
113
  tokenizer = BertTokenizer.from_pretrained(
114
  'clincolnoz/MoreSexistBERT',
115
- revision='state at epcoh 20' # tag name, or branch name, or commit hash
116
  )
117
  model = BertModel.from_pretrained(
118
  'clincolnoz/MoreSexistBERT',
119
- revision='state at epcoh 20' # tag name, or branch name, or commit hash
120
  )
121
  text = "Replace me by any text you'd like."
122
  encoded_input = tokenizer(text, return_tensors='pt')
@@ -129,12 +129,12 @@ and in TensorFlow:
129
  from transformers import BertTokenizer, TFBertModel
130
  tokenizer = BertTokenizer.from_pretrained(
131
  'clincolnoz/MoreSexistBERT',
132
- revision='v0.3' # tag name, or branch name, or commit hash
133
  )
134
  model = TFBertModel.from_pretrained(
135
  'clincolnoz/MoreSexistBERT',
136
  from_pt=True,
137
- revision='v0.3' # tag name, or branch name, or commit hash
138
  )
139
  text = "Replace me by any text you'd like."
140
  encoded_input = tokenizer(text, return_tensors='tf')
@@ -151,49 +151,49 @@ neutral, this model can have biased predictions:
151
  >>> unmasker = pipeline('fill-mask', model='clincolnoz/MoreSexistBERT')
152
  >>> unmasker("The man worked as a [MASK].")
153
 
154
- [{'score': 0.048671189695596695,
155
- 'token': 2158,
156
- 'token_str': 'man',
157
- 'sequence': 'the man worked as a man.'},
158
- {'score': 0.03886568173766136,
159
- 'token': 5660,
160
- 'token_str': 'cook',
161
- 'sequence': 'the man worked as a cook.'},
162
- {'score': 0.035448137670755386,
163
  'token': 15893,
164
  'token_str': 'mechanic',
165
  'sequence': 'the man worked as a mechanic.'},
166
- {'score': 0.03274817019701004,
167
- 'token': 6658,
168
- 'token_str': 'slave',
169
- 'sequence': 'the man worked as a slave.'},
170
- {'score': 0.030047740787267685,
171
- 'token': 10850,
172
- 'token_str': 'maid',
173
- 'sequence': 'the man worked as a maid.'}]
174
 
175
  >>> unmasker("The woman worked as a [MASK].")
176
 
177
- [{'score': 0.10640829056501389,
178
- 'token': 23775,
179
- 'token_str': 'receptionist',
180
- 'sequence': 'the woman worked as a receptionist.'},
181
- {'score': 0.08946268260478973,
182
- 'token': 13877,
183
- 'token_str': 'waitress',
184
- 'sequence': 'the woman worked as a waitress.'},
185
- {'score': 0.07824057340621948,
186
- 'token': 5660,
187
- 'token_str': 'cook',
188
- 'sequence': 'the woman worked as a cook.'},
189
- {'score': 0.0590374618768692,
190
  'token': 19215,
191
  'token_str': 'prostitute',
192
  'sequence': 'the woman worked as a prostitute.'},
193
- {'score': 0.05476761236786842,
194
- 'token': 10850,
195
- 'token_str': 'maid',
196
- 'sequence': 'the woman worked as a maid.'}]
 
 
 
 
197
  ```
198
 
199
  This bias may also affect all fine-tuned versions of this model.
 
84
  >>> unmasker = pipeline('fill-mask', model='clincolnoz/MoreSexistBERT')
85
  >>> unmasker("Hello I'm a [MASK] model.")
86
 
87
+ [{'score': 0.299740731716156,
88
  'token': 3287,
89
  'token_str': 'male',
90
  'sequence': "hello i'm a male model."},
91
+ {'score': 0.21594786643981934,
 
 
 
 
92
  'token': 4827,
93
  'token_str': 'fashion',
94
  'sequence': "hello i'm a fashion model."},
95
+ {'score': 0.06590863317251205,
96
+ 'token': 10516,
97
+ 'token_str': 'fitness',
98
+ 'sequence': "hello i'm a fitness model."},
99
+ {'score': 0.04644616320729256,
100
  'token': 3565,
101
  'token_str': 'super',
102
+ 'sequence': "hello i'm a super model."},
103
+ {'score': 0.03925987705588341,
104
+ 'token': 9271,
105
+ 'token_str': 'runway',
106
+ 'sequence': "hello i'm a runway model."}]
107
  ```
108
 
109
  Here is how to use this model to get the features of a given text in PyTorch:
 
112
  from transformers import BertTokenizer, BertModel
113
  tokenizer = BertTokenizer.from_pretrained(
114
  'clincolnoz/MoreSexistBERT',
115
+ revision='v0.40' # tag name, or branch name, or commit hash
116
  )
117
  model = BertModel.from_pretrained(
118
  'clincolnoz/MoreSexistBERT',
119
+ revision='v0.40' # tag name, or branch name, or commit hash
120
  )
121
  text = "Replace me by any text you'd like."
122
  encoded_input = tokenizer(text, return_tensors='pt')
 
129
  from transformers import BertTokenizer, TFBertModel
130
  tokenizer = BertTokenizer.from_pretrained(
131
  'clincolnoz/MoreSexistBERT',
132
+ revision='v0.40' # tag name, or branch name, or commit hash
133
  )
134
  model = TFBertModel.from_pretrained(
135
  'clincolnoz/MoreSexistBERT',
136
  from_pt=True,
137
+ revision='v0.40' # tag name, or branch name, or commit hash
138
  )
139
  text = "Replace me by any text you'd like."
140
  encoded_input = tokenizer(text, return_tensors='tf')
 
151
  >>> unmasker = pipeline('fill-mask', model='clincolnoz/MoreSexistBERT')
152
  >>> unmasker("The man worked as a [MASK].")
153
 
154
+ [{'score': 0.1449829787015915,
155
+ 'token': 15812,
156
+ 'token_str': 'bartender',
157
+ 'sequence': 'the man worked as a bartender.'},
158
+ {'score': 0.09319758415222168,
159
+ 'token': 6821,
160
+ 'token_str': 'nurse',
161
+ 'sequence': 'the man worked as a nurse.'},
162
+ {'score': 0.07738622277975082,
163
  'token': 15893,
164
  'token_str': 'mechanic',
165
  'sequence': 'the man worked as a mechanic.'},
166
+ {'score': 0.04416336491703987,
167
+ 'token': 15610,
168
+ 'token_str': 'waiter',
169
+ 'sequence': 'the man worked as a waiter.'},
170
+ {'score': 0.03337697684764862,
171
+ 'token': 3836,
172
+ 'token_str': 'teacher',
173
+ 'sequence': 'the man worked as a teacher.'}]
174
 
175
  >>> unmasker("The woman worked as a [MASK].")
176
 
177
+ [{'score': 0.17075787484645844,
178
+ 'token': 6821,
179
+ 'token_str': 'nurse',
180
+ 'sequence': 'the woman worked as a nurse.'},
181
+ {'score': 0.12234838306903839,
182
+ 'token': 15812,
183
+ 'token_str': 'bartender',
184
+ 'sequence': 'the woman worked as a bartender.'},
185
+ {'score': 0.10797207057476044,
 
 
 
 
186
  'token': 19215,
187
  'token_str': 'prostitute',
188
  'sequence': 'the woman worked as a prostitute.'},
189
+ {'score': 0.07464413344860077,
190
+ 'token': 13877,
191
+ 'token_str': 'waitress',
192
+ 'sequence': 'the woman worked as a waitress.'},
193
+ {'score': 0.06778198480606079,
194
+ 'token': 5160,
195
+ 'token_str': 'lawyer',
196
+ 'sequence': 'the woman worked as a lawyer.'}]
197
  ```
198
 
199
  This bias may also affect all fine-tuned versions of this model.
optimizer.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b081f3a089645cab51105bc261197b9540340d5e0e300cf12ac6392007a73fc3
3
  size 882547461
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:200a3dfd9ef3845e3a68672c6ef571c579522357d47c35921626f6460e28fba1
3
  size 882547461
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:048fe828da0da35e9891633b4be605bfc5acccf9d7dffc8269bb9564bfa3ebd7
3
  size 441287881
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:583eb3fa7a95352341d63631eb0cca72ec0e0a03d296880ea69aa147417c1e99
3
  size 441287881
rng_state.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5118472bfde82b6d77c1ec7c6f2e95d272e5adb7f0d764b11a9309819e4f441e
3
  size 14575
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d12779265d9170f28e8e209031c867490f2bb475ad50078a6253ee7f5d84730
3
  size 14575
scaler.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:10421ee283d2a2412512ef598325d07d2bac0aecf3a768d2aee08510a9ed4ee2
3
  size 557
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f0e55abf22d30e063e63a84e06db0e654406ff4c719ef93183de10325eeae97
3
  size 557
scheduler.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f5f12f5fdca9803ca14421952c1c8236588daf1e6b11e28b0a3215684200f70c
3
  size 627
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:985ddf5177904ec5f471f432905bdcd80ea3f58fcc0dba68b4213cb35e6cedbc
3
  size 627
trainer_state.json CHANGED
The diff for this file is too large to render. See raw diff