clincolnoz
commited on
Commit
•
4253d2c
1
Parent(s):
8e0373a
v0.40 state at 40 epochs
Browse files- README.md +50 -50
- optimizer.pt +1 -1
- pytorch_model.bin +1 -1
- rng_state.pth +1 -1
- scaler.pt +1 -1
- scheduler.pt +1 -1
- trainer_state.json +0 -0
README.md
CHANGED
@@ -84,26 +84,26 @@ You can use this model directly with a pipeline for masked language modeling:
|
|
84 |
>>> unmasker = pipeline('fill-mask', model='clincolnoz/MoreSexistBERT')
|
85 |
>>> unmasker("Hello I'm a [MASK] model.")
|
86 |
|
87 |
-
[{'score': 0.
|
88 |
'token': 3287,
|
89 |
'token_str': 'male',
|
90 |
'sequence': "hello i'm a male model."},
|
91 |
-
{'score': 0.
|
92 |
-
'token': 10516,
|
93 |
-
'token_str': 'fitness',
|
94 |
-
'sequence': "hello i'm a fitness model."},
|
95 |
-
{'score': 0.06420593708753586,
|
96 |
'token': 4827,
|
97 |
'token_str': 'fashion',
|
98 |
'sequence': "hello i'm a fashion model."},
|
99 |
-
{'score': 0.
|
100 |
-
'token':
|
101 |
-
'token_str': '
|
102 |
-
'sequence': "hello i'm a
|
103 |
-
{'score': 0.
|
104 |
'token': 3565,
|
105 |
'token_str': 'super',
|
106 |
-
'sequence': "hello i'm a super model."}
|
|
|
|
|
|
|
|
|
107 |
```
|
108 |
|
109 |
Here is how to use this model to get the features of a given text in PyTorch:
|
@@ -112,11 +112,11 @@ Here is how to use this model to get the features of a given text in PyTorch:
|
|
112 |
from transformers import BertTokenizer, BertModel
|
113 |
tokenizer = BertTokenizer.from_pretrained(
|
114 |
'clincolnoz/MoreSexistBERT',
|
115 |
-
revision='
|
116 |
)
|
117 |
model = BertModel.from_pretrained(
|
118 |
'clincolnoz/MoreSexistBERT',
|
119 |
-
revision='
|
120 |
)
|
121 |
text = "Replace me by any text you'd like."
|
122 |
encoded_input = tokenizer(text, return_tensors='pt')
|
@@ -129,12 +129,12 @@ and in TensorFlow:
|
|
129 |
from transformers import BertTokenizer, TFBertModel
|
130 |
tokenizer = BertTokenizer.from_pretrained(
|
131 |
'clincolnoz/MoreSexistBERT',
|
132 |
-
revision='v0.
|
133 |
)
|
134 |
model = TFBertModel.from_pretrained(
|
135 |
'clincolnoz/MoreSexistBERT',
|
136 |
from_pt=True,
|
137 |
-
revision='v0.
|
138 |
)
|
139 |
text = "Replace me by any text you'd like."
|
140 |
encoded_input = tokenizer(text, return_tensors='tf')
|
@@ -151,49 +151,49 @@ neutral, this model can have biased predictions:
|
|
151 |
>>> unmasker = pipeline('fill-mask', model='clincolnoz/MoreSexistBERT')
|
152 |
>>> unmasker("The man worked as a [MASK].")
|
153 |
|
154 |
-
[{'score': 0.
|
155 |
-
'token':
|
156 |
-
'token_str': '
|
157 |
-
'sequence': 'the man worked as a
|
158 |
-
{'score': 0.
|
159 |
-
'token':
|
160 |
-
'token_str': '
|
161 |
-
'sequence': 'the man worked as a
|
162 |
-
{'score': 0.
|
163 |
'token': 15893,
|
164 |
'token_str': 'mechanic',
|
165 |
'sequence': 'the man worked as a mechanic.'},
|
166 |
-
{'score': 0.
|
167 |
-
'token':
|
168 |
-
'token_str': '
|
169 |
-
'sequence': 'the man worked as a
|
170 |
-
{'score': 0.
|
171 |
-
'token':
|
172 |
-
'token_str': '
|
173 |
-
'sequence': 'the man worked as a
|
174 |
|
175 |
>>> unmasker("The woman worked as a [MASK].")
|
176 |
|
177 |
-
[{'score': 0.
|
178 |
-
'token':
|
179 |
-
'token_str': '
|
180 |
-
'sequence': 'the woman worked as a
|
181 |
-
{'score': 0.
|
182 |
-
'token':
|
183 |
-
'token_str': '
|
184 |
-
'sequence': 'the woman worked as a
|
185 |
-
{'score': 0.
|
186 |
-
'token': 5660,
|
187 |
-
'token_str': 'cook',
|
188 |
-
'sequence': 'the woman worked as a cook.'},
|
189 |
-
{'score': 0.0590374618768692,
|
190 |
'token': 19215,
|
191 |
'token_str': 'prostitute',
|
192 |
'sequence': 'the woman worked as a prostitute.'},
|
193 |
-
{'score': 0.
|
194 |
-
'token':
|
195 |
-
'token_str': '
|
196 |
-
'sequence': 'the woman worked as a
|
|
|
|
|
|
|
|
|
197 |
```
|
198 |
|
199 |
This bias may also affect all fine-tuned versions of this model.
|
|
|
84 |
>>> unmasker = pipeline('fill-mask', model='clincolnoz/MoreSexistBERT')
|
85 |
>>> unmasker("Hello I'm a [MASK] model.")
|
86 |
|
87 |
+
[{'score': 0.299740731716156,
|
88 |
'token': 3287,
|
89 |
'token_str': 'male',
|
90 |
'sequence': "hello i'm a male model."},
|
91 |
+
{'score': 0.21594786643981934,
|
|
|
|
|
|
|
|
|
92 |
'token': 4827,
|
93 |
'token_str': 'fashion',
|
94 |
'sequence': "hello i'm a fashion model."},
|
95 |
+
{'score': 0.06590863317251205,
|
96 |
+
'token': 10516,
|
97 |
+
'token_str': 'fitness',
|
98 |
+
'sequence': "hello i'm a fitness model."},
|
99 |
+
{'score': 0.04644616320729256,
|
100 |
'token': 3565,
|
101 |
'token_str': 'super',
|
102 |
+
'sequence': "hello i'm a super model."},
|
103 |
+
{'score': 0.03925987705588341,
|
104 |
+
'token': 9271,
|
105 |
+
'token_str': 'runway',
|
106 |
+
'sequence': "hello i'm a runway model."}]
|
107 |
```
|
108 |
|
109 |
Here is how to use this model to get the features of a given text in PyTorch:
|
|
|
112 |
from transformers import BertTokenizer, BertModel
|
113 |
tokenizer = BertTokenizer.from_pretrained(
|
114 |
'clincolnoz/MoreSexistBERT',
|
115 |
+
revision='v0.40' # tag name, or branch name, or commit hash
|
116 |
)
|
117 |
model = BertModel.from_pretrained(
|
118 |
'clincolnoz/MoreSexistBERT',
|
119 |
+
revision='v0.40' # tag name, or branch name, or commit hash
|
120 |
)
|
121 |
text = "Replace me by any text you'd like."
|
122 |
encoded_input = tokenizer(text, return_tensors='pt')
|
|
|
129 |
from transformers import BertTokenizer, TFBertModel
|
130 |
tokenizer = BertTokenizer.from_pretrained(
|
131 |
'clincolnoz/MoreSexistBERT',
|
132 |
+
revision='v0.40' # tag name, or branch name, or commit hash
|
133 |
)
|
134 |
model = TFBertModel.from_pretrained(
|
135 |
'clincolnoz/MoreSexistBERT',
|
136 |
from_pt=True,
|
137 |
+
revision='v0.40' # tag name, or branch name, or commit hash
|
138 |
)
|
139 |
text = "Replace me by any text you'd like."
|
140 |
encoded_input = tokenizer(text, return_tensors='tf')
|
|
|
151 |
>>> unmasker = pipeline('fill-mask', model='clincolnoz/MoreSexistBERT')
|
152 |
>>> unmasker("The man worked as a [MASK].")
|
153 |
|
154 |
+
[{'score': 0.1449829787015915,
|
155 |
+
'token': 15812,
|
156 |
+
'token_str': 'bartender',
|
157 |
+
'sequence': 'the man worked as a bartender.'},
|
158 |
+
{'score': 0.09319758415222168,
|
159 |
+
'token': 6821,
|
160 |
+
'token_str': 'nurse',
|
161 |
+
'sequence': 'the man worked as a nurse.'},
|
162 |
+
{'score': 0.07738622277975082,
|
163 |
'token': 15893,
|
164 |
'token_str': 'mechanic',
|
165 |
'sequence': 'the man worked as a mechanic.'},
|
166 |
+
{'score': 0.04416336491703987,
|
167 |
+
'token': 15610,
|
168 |
+
'token_str': 'waiter',
|
169 |
+
'sequence': 'the man worked as a waiter.'},
|
170 |
+
{'score': 0.03337697684764862,
|
171 |
+
'token': 3836,
|
172 |
+
'token_str': 'teacher',
|
173 |
+
'sequence': 'the man worked as a teacher.'}]
|
174 |
|
175 |
>>> unmasker("The woman worked as a [MASK].")
|
176 |
|
177 |
+
[{'score': 0.17075787484645844,
|
178 |
+
'token': 6821,
|
179 |
+
'token_str': 'nurse',
|
180 |
+
'sequence': 'the woman worked as a nurse.'},
|
181 |
+
{'score': 0.12234838306903839,
|
182 |
+
'token': 15812,
|
183 |
+
'token_str': 'bartender',
|
184 |
+
'sequence': 'the woman worked as a bartender.'},
|
185 |
+
{'score': 0.10797207057476044,
|
|
|
|
|
|
|
|
|
186 |
'token': 19215,
|
187 |
'token_str': 'prostitute',
|
188 |
'sequence': 'the woman worked as a prostitute.'},
|
189 |
+
{'score': 0.07464413344860077,
|
190 |
+
'token': 13877,
|
191 |
+
'token_str': 'waitress',
|
192 |
+
'sequence': 'the woman worked as a waitress.'},
|
193 |
+
{'score': 0.06778198480606079,
|
194 |
+
'token': 5160,
|
195 |
+
'token_str': 'lawyer',
|
196 |
+
'sequence': 'the woman worked as a lawyer.'}]
|
197 |
```
|
198 |
|
199 |
This bias may also affect all fine-tuned versions of this model.
|
optimizer.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 882547461
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:200a3dfd9ef3845e3a68672c6ef571c579522357d47c35921626f6460e28fba1
|
3 |
size 882547461
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 441287881
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:583eb3fa7a95352341d63631eb0cca72ec0e0a03d296880ea69aa147417c1e99
|
3 |
size 441287881
|
rng_state.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 14575
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d12779265d9170f28e8e209031c867490f2bb475ad50078a6253ee7f5d84730
|
3 |
size 14575
|
scaler.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 557
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f0e55abf22d30e063e63a84e06db0e654406ff4c719ef93183de10325eeae97
|
3 |
size 557
|
scheduler.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 627
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:985ddf5177904ec5f471f432905bdcd80ea3f58fcc0dba68b4213cb35e6cedbc
|
3 |
size 627
|
trainer_state.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|