opt-125m-full-billsum

This model is a fine-tuned version of facebook/opt-125m on an unknown dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1
  • num_epochs: 3

Training results

Evaluation Results (Validation): {'rouge1': 0.3162, 'rouge2': 0.1076, 'rougeL': 0.21, 'rougeLsum': 0.2332}

Evaluation Results (Test): {'rouge1': 0.4993, 'rouge2': 0.3035, 'rougeL': 0.3973, 'rougeLsum': 0.4228}

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
27
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for clee9/opt125m-full-billsum

Base model

facebook/opt-125m
Finetuned
(48)
this model