metadata
language:
- zh
thumbnail: https://ckip.iis.sinica.edu.tw/files/ckip_logo.png
tags:
- pytorch
- token-classification
- bert
- zh
license: gpl-3.0
CKIP BERT Base Han Chinese WS
This model provides word segmentation for the ancient Chinese language. Our training dataset covers four eras of the Chinese language.
Homepage
Training Datasets
The copyright of the datasets belongs to the Institute of Linguistics, Academia Sinica.
Contributors
- Chin-Tung Lin at CKIP
Usage
Using our model in your script
from transformers import ( AutoTokenizer, AutoModel, ) tokenizer = AutoTokenizer.from_pretrained("ckiplab/bert-base-han-chinese-ws") model = AutoModel.from_pretrained("ckiplab/bert-base-han-chinese-ws")
Using our model for inference
>>> from transformers import pipeline >>> classifier = pipeline("token-classification", model="ckiplab/bert-base-han-chinese-ws") >>> classifier("帝堯曰放勳") # output [{'entity': 'B', 'score': 0.9999793, 'index': 1, 'word': '帝', 'start': 0, 'end': 1}, {'entity': 'I', 'score': 0.9915047, 'index': 2, 'word': '堯', 'start': 1, 'end': 2}, {'entity': 'B', 'score': 0.99992275, 'index': 3, 'word': '曰', 'start': 2, 'end': 3}, {'entity': 'B', 'score': 0.99905187, 'index': 4, 'word': '放', 'start': 3, 'end': 4}, {'entity': 'I', 'score': 0.96299917, 'index': 5, 'word': '勳', 'start': 4, 'end': 5}]