Model Card
#1
by
Ezi
- opened
README.md
CHANGED
@@ -12,24 +12,81 @@ license: gpl-3.0
|
|
12 |
|
13 |
# CKIP ALBERT Tiny Chinese
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
This project provides traditional Chinese transformers models (including ALBERT, BERT, GPT2) and NLP tools (including word segmentation, part-of-speech tagging, named entity recognition).
|
16 |
|
17 |
這個專案提供了繁體中文的 transformers 模型(包含 ALBERT、BERT、GPT2)及自然語言處理工具(包含斷詞、詞性標記、實體辨識)。
|
18 |
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
- https://github.com/ckiplab/ckip-transformers
|
22 |
|
23 |
-
## Contributers
|
24 |
|
25 |
-
|
26 |
|
27 |
-
|
28 |
|
29 |
-
|
30 |
|
31 |
請使用 BertTokenizerFast 而非 AutoTokenizer。
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
```
|
34 |
from transformers import (
|
35 |
BertTokenizerFast,
|
@@ -40,6 +97,4 @@ tokenizer = BertTokenizerFast.from_pretrained('bert-base-chinese')
|
|
40 |
model = AutoModel.from_pretrained('ckiplab/albert-tiny-chinese')
|
41 |
```
|
42 |
|
43 |
-
For full usage and more information, please refer to https://github.com/ckiplab/ckip-transformers.
|
44 |
|
45 |
-
有關完整使用方法及其他資訊,請參見 https://github.com/ckiplab/ckip-transformers 。
|
|
|
12 |
|
13 |
# CKIP ALBERT Tiny Chinese
|
14 |
|
15 |
+
## Table of Contents
|
16 |
+
- [Model Details](#model-details)
|
17 |
+
- [Uses](#uses)
|
18 |
+
- [Risks, Limitations and Biases](#risks-limitations-and-biases)
|
19 |
+
- [Training](#training)
|
20 |
+
- [Evaluation](#evaluation)
|
21 |
+
- [How to Get Started With the Model](#how-to-get-started-with-the-model)
|
22 |
+
|
23 |
+
## Model Details
|
24 |
+
- **Model Description:**
|
25 |
+
|
26 |
This project provides traditional Chinese transformers models (including ALBERT, BERT, GPT2) and NLP tools (including word segmentation, part-of-speech tagging, named entity recognition).
|
27 |
|
28 |
這個專案提供了繁體中文的 transformers 模型(包含 ALBERT、BERT、GPT2)及自然語言處理工具(包含斷詞、詞性標記、實體辨識)。
|
29 |
|
30 |
+
- **Developed by:** [Mu Yang](https://muyang.pro) at [CKIP](https://ckip.iis.sinica.edu.tw)
|
31 |
+
- **Model Type:** Fill-Mask
|
32 |
+
- **Language(s):** Chinese
|
33 |
+
- **License:** gpl-3.0
|
34 |
+
- **Parent Model:** See the [ALBERT base model](https://huggingface.co/albert-base-v2) for more information about the ALBERT base model.
|
35 |
+
- **Resources for more information:**
|
36 |
+
- [GitHub Repo](https://github.com/ckiplab/ckip-transformers)
|
37 |
+
- [CKIP Documentation](https://ckip-transformers.readthedocs.io/en/stable/)
|
38 |
|
|
|
39 |
|
|
|
40 |
|
41 |
+
## Uses
|
42 |
|
43 |
+
#### Direct Use
|
44 |
|
45 |
+
The model author suggests using BertTokenizerFast as tokenizer instead of AutoTokenizer.
|
46 |
|
47 |
請使用 BertTokenizerFast 而非 AutoTokenizer。
|
48 |
|
49 |
+
For full usage and more information, please refer to [github repository] (https://github.com/ckiplab/ckip-transformers.)
|
50 |
+
|
51 |
+
有關完整使用方法及其他資訊,請參見 [github repository] (https://github.com/ckiplab/ckip-transformers.)
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
## Risks, Limitations and Biases
|
56 |
+
**CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.**
|
57 |
+
|
58 |
+
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
|
59 |
+
|
60 |
+
|
61 |
+
## Training
|
62 |
+
|
63 |
+
|
64 |
+
#### Training Data
|
65 |
+
|
66 |
+
The language models are trained on the ZhWiki and CNA datasets; the WS and POS tasks are trained on the ASBC dataset; the NER tasks are trained on the OntoNotes dataset.
|
67 |
+
以上的語言模型訓練於 ZhWiki 與 CNA 資料集上;斷詞(WS)與詞性標記(POS)任務模型訓練於 ASBC 資料集上;實體辨識(NER)任務模型訓練於 OntoNotes 資料集上。
|
68 |
+
|
69 |
+
#### Training Procedure
|
70 |
+
* **Parameters:** 4M
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
## Evaluation
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
#### Results
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
* **Perplexity:** 4.40
|
84 |
+
* **WOS (Word Segmentation) [F1]:** 96.66%
|
85 |
+
* **POS (Part-of-speech) [ACC]:** 94.48%
|
86 |
+
* **NER (Named-entity recognition) [F1]:** 71.17%
|
87 |
+
|
88 |
+
## How to Get Started With the Model
|
89 |
+
|
90 |
```
|
91 |
from transformers import (
|
92 |
BertTokenizerFast,
|
|
|
97 |
model = AutoModel.from_pretrained('ckiplab/albert-tiny-chinese')
|
98 |
```
|
99 |
|
|
|
100 |
|
|