Edit model card

Metrics

  • loss: 1.0434
  • accuracy: 0.8218
  • precision: 0.8145
  • recall: 0.8218
  • precision_macro: 0.6907
  • recall_macro: 0.6533
  • macro_fpr: 0.0897
  • weighted_fpr: 0.0674
  • weighted_specificity: 0.8528
  • macro_specificity: 0.9187
  • weighted_sensitivity: 0.8218
  • macro_sensitivity: 0.6533
  • f1_micro: 0.8218
  • f1_macro: 0.6690
  • f1_weighted: 0.8159
  • runtime: 198.6459
  • samples_per_second: 2.2600
  • steps_per_second: 0.2870

case-analysis-InLegalBERT

This model is a fine-tuned version of law-ai/InLegalBERT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0434
  • Accuracy: 0.8218
  • Precision: 0.8145
  • Recall: 0.8218
  • Precision Macro: 0.6439
  • Recall Macro: 0.6295
  • Macro Fpr: 0.0890
  • Weighted Fpr: 0.0674
  • Weighted Specificity: 0.8544
  • Macro Specificity: 0.9191
  • Weighted Sensitivity: 0.8218
  • Macro Sensitivity: 0.6295
  • F1 Micro: 0.8218
  • F1 Macro: 0.6335
  • F1 Weighted: 0.8106

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall Precision Macro Recall Macro Macro Fpr Weighted Fpr Weighted Specificity Macro Specificity Weighted Sensitivity Macro Sensitivity F1 Micro F1 Macro F1 Weighted
No log 1.0 224 0.6546 0.8018 0.7632 0.8018 0.5777 0.6106 0.0978 0.0761 0.8432 0.9112 0.8018 0.6106 0.8018 0.5936 0.7820
No log 2.0 448 0.6831 0.8129 0.7732 0.8129 0.5845 0.6154 0.0923 0.0712 0.8554 0.9171 0.8129 0.6154 0.8129 0.5996 0.7926
0.607 3.0 672 0.7626 0.8263 0.8060 0.8263 0.6773 0.6341 0.0885 0.0655 0.8464 0.9182 0.8263 0.6341 0.8263 0.6362 0.8105
0.607 4.0 896 0.7839 0.8085 0.7991 0.8085 0.6391 0.6306 0.0896 0.0732 0.8754 0.9210 0.8085 0.6306 0.8085 0.6314 0.8017
0.316 5.0 1120 0.9381 0.8263 0.8127 0.8263 0.6688 0.6573 0.0822 0.0655 0.8780 0.9261 0.8263 0.6573 0.8263 0.6514 0.8161
0.316 6.0 1344 1.0434 0.8218 0.8145 0.8218 0.6907 0.6533 0.0897 0.0674 0.8528 0.9187 0.8218 0.6533 0.8218 0.6690 0.8159
0.1513 7.0 1568 1.2182 0.8018 0.8066 0.8018 0.6382 0.6399 0.0916 0.0761 0.8802 0.9205 0.8018 0.6399 0.8018 0.6375 0.8030
0.1513 8.0 1792 1.3193 0.8285 0.8070 0.8285 0.6566 0.6280 0.0882 0.0645 0.8521 0.9202 0.8285 0.6280 0.8285 0.6376 0.8152
0.0491 9.0 2016 1.3169 0.8330 0.8180 0.8330 0.6950 0.6555 0.0828 0.0627 0.8653 0.9246 0.8330 0.6555 0.8330 0.6687 0.8235
0.0491 10.0 2240 1.4460 0.8307 0.8109 0.8307 0.6584 0.6291 0.0868 0.0636 0.8533 0.9210 0.8307 0.6291 0.8307 0.6398 0.8184
0.0491 11.0 2464 1.4100 0.8419 0.8166 0.8419 0.6718 0.6399 0.0806 0.0589 0.8642 0.9265 0.8419 0.6399 0.8419 0.6464 0.8263
0.0148 12.0 2688 1.5364 0.8218 0.8105 0.8218 0.6661 0.6340 0.0903 0.0674 0.8505 0.9181 0.8218 0.6340 0.8218 0.6469 0.8137
0.0148 13.0 2912 1.5380 0.8307 0.8118 0.8307 0.6596 0.6304 0.0870 0.0636 0.8512 0.9205 0.8307 0.6304 0.8307 0.6409 0.8185
0.0031 14.0 3136 1.6139 0.8218 0.8108 0.8218 0.6451 0.6353 0.0860 0.0674 0.8685 0.9226 0.8218 0.6353 0.8218 0.6396 0.8159
0.0031 15.0 3360 1.6356 0.8263 0.8117 0.8263 0.6626 0.6477 0.0842 0.0655 0.8700 0.9241 0.8263 0.6477 0.8263 0.6529 0.8183
0.0043 16.0 3584 1.6745 0.8241 0.7994 0.8241 0.6244 0.6229 0.0884 0.0664 0.8543 0.9196 0.8241 0.6229 0.8241 0.6231 0.8108
0.0043 17.0 3808 1.7867 0.8085 0.7946 0.8085 0.6221 0.6336 0.0906 0.0732 0.8678 0.9191 0.8085 0.6336 0.8085 0.6229 0.7996
0.0008 18.0 4032 1.7511 0.8151 0.7971 0.8151 0.6110 0.6216 0.0901 0.0703 0.8644 0.9199 0.8151 0.6216 0.8151 0.6145 0.8046
0.0008 19.0 4256 1.5909 0.8441 0.8079 0.8441 0.6260 0.6374 0.0792 0.0580 0.8670 0.9278 0.8441 0.6374 0.8441 0.6311 0.8249
0.0008 20.0 4480 1.5721 0.8463 0.8212 0.8463 0.6727 0.6546 0.0761 0.0571 0.8753 0.9304 0.8463 0.6546 0.8463 0.6547 0.8316
0.0039 21.0 4704 1.5819 0.8396 0.8054 0.8396 0.6337 0.6200 0.0843 0.0599 0.8527 0.9231 0.8396 0.6200 0.8396 0.6245 0.8199
0.0039 22.0 4928 1.5906 0.8486 0.8236 0.8486 0.6814 0.6512 0.0770 0.0562 0.8680 0.9291 0.8486 0.6512 0.8486 0.6570 0.8333
0.0005 23.0 5152 1.7133 0.8263 0.8047 0.8263 0.6403 0.6431 0.0831 0.0655 0.8745 0.9252 0.8263 0.6431 0.8263 0.6367 0.8143
0.0005 24.0 5376 1.7813 0.8241 0.8022 0.8241 0.6515 0.6290 0.0894 0.0664 0.8490 0.9183 0.8241 0.6290 0.8241 0.6348 0.8108
0.0033 25.0 5600 1.7983 0.8218 0.8001 0.8218 0.6485 0.6281 0.0902 0.0674 0.8486 0.9176 0.8218 0.6281 0.8218 0.6328 0.8088
0.0033 26.0 5824 1.8070 0.8218 0.8001 0.8218 0.6485 0.6281 0.0902 0.0674 0.8486 0.9176 0.8218 0.6281 0.8218 0.6328 0.8088
0.0 27.0 6048 1.8198 0.8218 0.8024 0.8218 0.6439 0.6295 0.0890 0.0674 0.8544 0.9191 0.8218 0.6295 0.8218 0.6335 0.8106
0.0 28.0 6272 1.8243 0.8218 0.8024 0.8218 0.6439 0.6295 0.0890 0.0674 0.8544 0.9191 0.8218 0.6295 0.8218 0.6335 0.8106
0.0 29.0 6496 1.8277 0.8218 0.8024 0.8218 0.6439 0.6295 0.0890 0.0674 0.8544 0.9191 0.8218 0.6295 0.8218 0.6335 0.8106
0.0003 30.0 6720 1.8292 0.8218 0.8024 0.8218 0.6439 0.6295 0.0890 0.0674 0.8544 0.9191 0.8218 0.6295 0.8218 0.6335 0.8106

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2
Downloads last month
30
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for cite-text-analysis/case-analysis-InLegalBERT

Base model

law-ai/InLegalBERT
Finetuned
(9)
this model