Edit model card

electramed-small-ADE-DRUG-EFFECT-ner-v3

This model is a fine-tuned version of giacomomiolo/electramed_small_scivocab on the ade_drug_effect_ner dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1626
  • Precision: 0.7436
  • Recall: 0.6711
  • F1: 0.7055
  • Accuracy: 0.9335

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.3393 1.0 336 0.3055 0.6126 0.6648 0.6376 0.9218
0.2503 2.0 672 0.2138 0.7025 0.6905 0.6964 0.9300
0.1494 3.0 1008 0.1879 0.7342 0.6555 0.6926 0.9326
0.1152 4.0 1344 0.1755 0.7323 0.6797 0.7050 0.9327
0.178 5.0 1680 0.1726 0.7279 0.6827 0.7045 0.9326
0.1814 6.0 2016 0.1654 0.7358 0.6734 0.7032 0.9332
0.1292 7.0 2352 0.1641 0.7332 0.6849 0.7082 0.9336
0.1107 8.0 2688 0.1638 0.7520 0.6522 0.6985 0.9337
0.1911 9.0 3024 0.1625 0.7503 0.6596 0.7020 0.9331
0.1517 10.0 3360 0.1626 0.7436 0.6711 0.7055 0.9335

Framework versions

  • Transformers 4.22.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.5.1
  • Tokenizers 0.12.1
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results