cheaptrix's picture
Update README.md
b867c1f verified
|
raw
history blame
2.09 kB
metadata
license: apache-2.0
base_model: google-t5/t5-small
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: senate_bills_summary_model
    results: []
datasets:
  - cheaptrix/UnitedStatesSenateBillsAndSummaries
language:
  - en

senate_bills_summary_model

This model is a fine-tuned version of google-t5/t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9099
  • Rouge1: 0.2477
  • Rouge2: 0.1963
  • Rougel: 0.2407
  • Rougelsum: 0.2406
  • Gen Len: 18.9992

Model description

This model is a fine-tuned Google T5-Small model that is fine-tuned to summarize United States Senate Bills.

Intended uses & limitations

Summarize United States Federal Legislation.

Training and evaluation data

Trained on ~13.1k bills and summaries.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 14
  • eval_batch_size: 14
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
2.2318 1.0 749 1.9710 0.2475 0.1952 0.2405 0.2402 18.9985
2.1782 2.0 1498 1.9331 0.2478 0.1959 0.2408 0.2406 18.9992
2.1355 3.0 2247 1.9141 0.2479 0.1961 0.2409 0.2407 18.9992
2.1079 4.0 2996 1.9099 0.2477 0.1963 0.2407 0.2406 18.9992

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1