Llama-3.1-8B-Instruct-SFT-200
This model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct on the bct_non_cot_sft_200 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2912
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.7576 | 4.4444 | 50 | 0.6173 |
0.3664 | 8.8889 | 100 | 0.2912 |
Framework versions
- PEFT 0.12.0
- Transformers 4.45.2
- Pytorch 2.3.0
- Datasets 2.19.0
- Tokenizers 0.20.0
- Downloads last month
- 10
Model tree for chchen/Llama-3.1-8B-Instruct-SFT-200
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct