Llama-3.1-8B-Instruct-SAA-300
This model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct on the bct_non_cot_dpo_300 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2542
- Rewards/chosen: -0.0199
- Rewards/rejected: -0.0490
- Rewards/accuracies: 0.7333
- Rewards/margins: 0.0291
- Logps/rejected: -0.4904
- Logps/chosen: -0.1993
- Logits/rejected: -0.4804
- Logits/chosen: -0.4435
- Sft Loss: 0.0199
- Odds Ratio Loss: 2.3427
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Sft Loss | Odds Ratio Loss |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.0613 | 2.9630 | 50 | 0.9214 | -0.0866 | -0.1163 | 0.7667 | 0.0297 | -1.1632 | -0.8661 | -0.4969 | -0.4510 | 0.0877 | 8.3368 |
0.3375 | 5.9259 | 100 | 0.3373 | -0.0282 | -0.0580 | 0.7333 | 0.0297 | -0.5795 | -0.2823 | -0.4847 | -0.4453 | 0.0271 | 3.1020 |
0.2209 | 8.8889 | 150 | 0.2542 | -0.0199 | -0.0490 | 0.7333 | 0.0291 | -0.4904 | -0.1993 | -0.4804 | -0.4435 | 0.0199 | 2.3427 |
Framework versions
- PEFT 0.12.0
- Transformers 4.45.2
- Pytorch 2.3.0
- Datasets 2.19.0
- Tokenizers 0.20.0
- Downloads last month
- 8
Model tree for chchen/Llama-3.1-8B-Instruct-SAA-300
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct