Llama-3.1-8B-Instruct-KTO-100

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the bct_non_cot_kto_100 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4997
  • Rewards/chosen: 0.0050
  • Logps/chosen: -17.0744
  • Logits/chosen: -5053702.8571
  • Rewards/rejected: 0.0078
  • Logps/rejected: -23.8299
  • Logits/rejected: -7957526.6667
  • Rewards/margins: -0.0028
  • Kl: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Logps/chosen Logits/chosen Rewards/rejected Logps/rejected Logits/rejected Rewards/margins
0.4944 4.4444 50 0.5018 -0.0014 -17.1389 -5154306.2857 0.0189 -23.7185 -7920785.3333 -0.0204 0.0758
0.4809 8.8889 100 0.4997 0.0050 -17.0744 -5053702.8571 0.0078 -23.8299 -7957526.6667 -0.0028 0.0

Framework versions

  • PEFT 0.12.0
  • Transformers 4.46.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
5
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for chchen/Llama-3.1-8B-Instruct-KTO-100

Adapter
(627)
this model