llama-2-7b-nsmc2 / README.md
chaem's picture
Update README.md
0c7e48f
|
raw
history blame
2.33 kB
metadata
base_model: meta-llama/Llama-2-7b-chat-hf
tags:
  - generated_from_trainer
model-index:
  - name: llama-2-7b-nsmc2
    results: []

llama-2-7b-nsmc2

This model is a fine-tuned version of meta-llama/Llama-2-7b-chat-hf on an nsmc dataset.

Model description

llama-2λͺ¨λΈμ„ nsmc데이터에 λŒ€ν•΄ λ―Έμ„ΈνŠœλ‹ν•œ λͺ¨λΈ
μ˜ν™” 리뷰 데이터λ₯Ό 기반으둜 μ‚¬μš©μžκ°€ μž‘μ„±ν•œ 리뷰의 긍정 λ˜λŠ” 뢀정을 νŒŒμ•…ν•œλ‹€.

Intended uses & limitations

Intended uses

μ‚¬μš©μžκ°€ μž‘μ„±ν•œ 리뷰의 긍정 λ˜λŠ” λΆ€μ • 감정 뢄석을 μ œκ³΅ν•¨

Limitaions

μ˜ν™” 리뷰에 νŠΉν™”λ˜μ–΄ 있으며, λ‹€λ₯Έ μœ ν˜•μ—λŠ” μ œν•œμ΄ μžˆμ„ 수 있음
Colab T4 GPUμ—μ„œ ν…ŒμŠ€νŠΈ λ˜μ—ˆμŒ

Training and evaluation data

Training data: nsmc 'train' data 쀑 μƒμœ„ 2000개의 μƒ˜ν”Œ Evaluation data: nsmc 'test' data 쀑 μƒμœ„ 1000개의 μƒ˜ν”Œ

Training procedure

trainer.train() 2:02:05 μ†Œμš”
μΆ”λ‘ κ³Όμ • GPU λ©”λͺ¨λ¦¬ 5.7GB μ‚¬μš©
300 stepλ§ˆλ‹€ 체크포인트 μ €μž₯

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 2
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

trainable params: 19988480 || all params: 3520401408 || trainable%: 0.5677897967708119

image/png

정확도

Llama2: 정확도 0.913

Positive Prediction(PP) Negative Prediction(NP)
True Positive (TP) 441 67
True Negative (TN) 20 472

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0