Yi-Coder-1.5B-Chat-exl2
Original model: Yi-Coder-1.5B-Chat
Created by: 01-ai
Quants
4bpw h6 (main)
4.5bpw h6
5bpw h6
6bpw h6
8bpw h8
Quantization notes
Made with Exllamav2 0.2.0 with the default dataset.
These quants can be used with RTX cards on Windows/Linux or AMD on Linux via Exllamav2 library available in TabbyAPI, Text-Generation-WebUI, etc.
Original model card
π GitHub β’
πΎ Discord β’
π€ Twitter β’
π¬ WeChat
π Paper β’
πͺ Tech Blog β’
π FAQ β’
π Learning Hub
Intro
Yi-Coder is a series of open-source code language models that delivers state-of-the-art coding performance with fewer than 10 billion parameters.
Key features:
- Excelling in long-context understanding with a maximum context length of 128K tokens.
- Supporting 52 major programming languages:
'java', 'markdown', 'python', 'php', 'javascript', 'c++', 'c#', 'c', 'typescript', 'html', 'go', 'java_server_pages', 'dart', 'objective-c', 'kotlin', 'tex', 'swift', 'ruby', 'sql', 'rust', 'css', 'yaml', 'matlab', 'lua', 'json', 'shell', 'visual_basic', 'scala', 'rmarkdown', 'pascal', 'fortran', 'haskell', 'assembly', 'perl', 'julia', 'cmake', 'groovy', 'ocaml', 'powershell', 'elixir', 'clojure', 'makefile', 'coffeescript', 'erlang', 'lisp', 'toml', 'batchfile', 'cobol', 'dockerfile', 'r', 'prolog', 'verilog'
For model details and benchmarks, see Yi-Coder blog and Yi-Coder README.
Models
Name | Type | Length | Download |
---|---|---|---|
Yi-Coder-9B-Chat | Chat | 128K | π€ Hugging Face β’ π€ ModelScope β’ π£ wisemodel |
Yi-Coder-1.5B-Chat | Chat | 128K | π€ Hugging Face β’ π€ ModelScope β’ π£ wisemodel |
Yi-Coder-9B | Base | 128K | π€ Hugging Face β’ π€ ModelScope β’ π£ wisemodel |
Yi-Coder-1.5B | Base | 128K | π€ Hugging Face β’ π€ ModelScope β’ π£ wisemodel |
Benchmarks
As illustrated in the figure below, Yi-Coder-9B-Chat achieved an impressive 23% pass rate in LiveCodeBench, making it the only model with under 10B parameters to surpass 20%. It also outperforms DeepSeekCoder-33B-Ins at 22.3%, CodeGeex4-9B-all at 17.8%, CodeLLama-34B-Ins at 13.3%, and CodeQwen1.5-7B-Chat at 12%.
Quick Start
You can use transformers to run inference with Yi-Coder models (both chat and base versions) as follows:
from transformers import AutoTokenizer, AutoModelForCausalLM
device = "cuda" # the device to load the model onto
model_path = "01-ai/Yi-Coder-9B-Chat"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto").eval()
prompt = "Write a quick sort algorithm."
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=1024,
eos_token_id=tokenizer.eos_token_id
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
For getting up and running with Yi-Coder series models quickly, see Yi-Coder README.
- Downloads last month
- 3