metadata
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: ' "Die Diskussion um ein nationales Tempolimit auf Autobahnen wird weiterhin kontrovers geführt, wobei Befürworter auf die Verbesserung der Verkehrssicherheit und Gegner auf die Einschränkung der individuellen Freiheit verweisen."'
- text: ' Diese selbsternannten Klimaretter blockieren wieder einmal die Straßen und sorgen für Chaos, während der Rest der Welt zur Arbeit gehen muss.'
- text: ' Klima-Aktivisten wie Fridays for Future und die Letzte Generation fordern mit ihren Aktionen eine schnellere Umsetzung von Klimaschutzmaßnahmen.'
- text: >-
Die Blockaden von Straßen und Autobahnen durch Klima-Aktivisten haben in
den letzten Wochen sowohl Unterstützung als auch Kritik hervorgerufen,
wobei einige die Dringlichkeit des Klimanotstands betonen, während andere
die Beeinträchtigung des Alltags und die Rechte anderer Nutzer der
Verkehrsinfrastruktur in den Vordergrund stellen.
- text: ' "Ein nationales Tempolimit auf Autobahnen könnte nicht nur die Verkehrssicherheit erhöhen, sondern auch einen wichtigen Beitrag zum Klimaschutz leisten."'
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: sentence-transformers/all-mpnet-base-v2
model-index:
- name: SetFit with sentence-transformers/all-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.946236559139785
name: Accuracy
SetFit with sentence-transformers/all-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/all-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 384 tokens
- Number of Classes: 3 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
neutral |
|
opposed |
|
supportive |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.9462 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("cbpuschmann/all-mpnet-base-klimacoder_v0.7")
# Run inference
preds = model(" Diese selbsternannten Klimaretter blockieren wieder einmal die Straßen und sorgen für Chaos, während der Rest der Welt zur Arbeit gehen muss.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 10 | 25.6075 | 57 |
Label | Training Sample Count |
---|---|
neutral | 329 |
opposed | 395 |
supportive | 392 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0000 | 1 | 0.2421 | - |
0.0019 | 50 | 0.259 | - |
0.0039 | 100 | 0.2536 | - |
0.0058 | 150 | 0.25 | - |
0.0077 | 200 | 0.243 | - |
0.0097 | 250 | 0.2441 | - |
0.0116 | 300 | 0.2377 | - |
0.0135 | 350 | 0.2247 | - |
0.0155 | 400 | 0.2031 | - |
0.0174 | 450 | 0.1656 | - |
0.0193 | 500 | 0.1383 | - |
0.0213 | 550 | 0.1383 | - |
0.0232 | 600 | 0.1155 | - |
0.0251 | 650 | 0.1007 | - |
0.0271 | 700 | 0.0741 | - |
0.0290 | 750 | 0.063 | - |
0.0309 | 800 | 0.0428 | - |
0.0329 | 850 | 0.0304 | - |
0.0348 | 900 | 0.0243 | - |
0.0367 | 950 | 0.0189 | - |
0.0387 | 1000 | 0.0135 | - |
0.0406 | 1050 | 0.0089 | - |
0.0425 | 1100 | 0.0115 | - |
0.0445 | 1150 | 0.0071 | - |
0.0464 | 1200 | 0.0068 | - |
0.0483 | 1250 | 0.0057 | - |
0.0503 | 1300 | 0.0052 | - |
0.0522 | 1350 | 0.0063 | - |
0.0541 | 1400 | 0.0064 | - |
0.0561 | 1450 | 0.006 | - |
0.0580 | 1500 | 0.0035 | - |
0.0599 | 1550 | 0.008 | - |
0.0619 | 1600 | 0.0069 | - |
0.0638 | 1650 | 0.0021 | - |
0.0657 | 1700 | 0.0037 | - |
0.0677 | 1750 | 0.0034 | - |
0.0696 | 1800 | 0.0049 | - |
0.0715 | 1850 | 0.0024 | - |
0.0735 | 1900 | 0.0085 | - |
0.0754 | 1950 | 0.0075 | - |
0.0773 | 2000 | 0.0073 | - |
0.0793 | 2050 | 0.0031 | - |
0.0812 | 2100 | 0.0031 | - |
0.0831 | 2150 | 0.0017 | - |
0.0851 | 2200 | 0.0024 | - |
0.0870 | 2250 | 0.0026 | - |
0.0889 | 2300 | 0.0033 | - |
0.0909 | 2350 | 0.0097 | - |
0.0928 | 2400 | 0.0079 | - |
0.0947 | 2450 | 0.0028 | - |
0.0967 | 2500 | 0.0021 | - |
0.0986 | 2550 | 0.0015 | - |
0.1005 | 2600 | 0.0018 | - |
0.1025 | 2650 | 0.0028 | - |
0.1044 | 2700 | 0.0045 | - |
0.1063 | 2750 | 0.0029 | - |
0.1083 | 2800 | 0.0007 | - |
0.1102 | 2850 | 0.0 | - |
0.1121 | 2900 | 0.0008 | - |
0.1141 | 2950 | 0.0017 | - |
0.1160 | 3000 | 0.0018 | - |
0.1179 | 3050 | 0.0014 | - |
0.1199 | 3100 | 0.0012 | - |
0.1218 | 3150 | 0.001 | - |
0.1237 | 3200 | 0.0016 | - |
0.1257 | 3250 | 0.0043 | - |
0.1276 | 3300 | 0.0001 | - |
0.1295 | 3350 | 0.0017 | - |
0.1315 | 3400 | 0.0003 | - |
0.1334 | 3450 | 0.0004 | - |
0.1353 | 3500 | 0.0014 | - |
0.1373 | 3550 | 0.0001 | - |
0.1392 | 3600 | 0.0 | - |
0.1411 | 3650 | 0.0012 | - |
0.1431 | 3700 | 0.0005 | - |
0.1450 | 3750 | 0.0 | - |
0.1469 | 3800 | 0.0 | - |
0.1489 | 3850 | 0.0 | - |
0.1508 | 3900 | 0.0 | - |
0.1527 | 3950 | 0.0 | - |
0.1547 | 4000 | 0.0061 | - |
0.1566 | 4050 | 0.0014 | - |
0.1585 | 4100 | 0.0005 | - |
0.1605 | 4150 | 0.0005 | - |
0.1624 | 4200 | 0.0001 | - |
0.1643 | 4250 | 0.0003 | - |
0.1663 | 4300 | 0.0033 | - |
0.1682 | 4350 | 0.0049 | - |
0.1701 | 4400 | 0.0012 | - |
0.1721 | 4450 | 0.0 | - |
0.1740 | 4500 | 0.0012 | - |
0.1759 | 4550 | 0.0006 | - |
0.1779 | 4600 | 0.0 | - |
0.1798 | 4650 | 0.0 | - |
0.1817 | 4700 | 0.0 | - |
0.1837 | 4750 | 0.0 | - |
0.1856 | 4800 | 0.0 | - |
0.1875 | 4850 | 0.0 | - |
0.1895 | 4900 | 0.0 | - |
0.1914 | 4950 | 0.0 | - |
0.1933 | 5000 | 0.0 | - |
0.1953 | 5050 | 0.0 | - |
0.1972 | 5100 | 0.0 | - |
0.1991 | 5150 | 0.0 | - |
0.2011 | 5200 | 0.0 | - |
0.2030 | 5250 | 0.0 | - |
0.2049 | 5300 | 0.0091 | - |
0.2069 | 5350 | 0.0118 | - |
0.2088 | 5400 | 0.0032 | - |
0.2107 | 5450 | 0.0009 | - |
0.2127 | 5500 | 0.0011 | - |
0.2146 | 5550 | 0.0015 | - |
0.2165 | 5600 | 0.0026 | - |
0.2185 | 5650 | 0.0016 | - |
0.2204 | 5700 | 0.0 | - |
0.2223 | 5750 | 0.0019 | - |
0.2243 | 5800 | 0.0039 | - |
0.2262 | 5850 | 0.0005 | - |
0.2281 | 5900 | 0.0006 | - |
0.2301 | 5950 | 0.0015 | - |
0.2320 | 6000 | 0.0018 | - |
0.2339 | 6050 | 0.0012 | - |
0.2359 | 6100 | 0.0042 | - |
0.2378 | 6150 | 0.0016 | - |
0.2397 | 6200 | 0.0011 | - |
0.2417 | 6250 | 0.0 | - |
0.2436 | 6300 | 0.0 | - |
0.2455 | 6350 | 0.0025 | - |
0.2475 | 6400 | 0.0012 | - |
0.2494 | 6450 | 0.0 | - |
0.2513 | 6500 | 0.0 | - |
0.2533 | 6550 | 0.0 | - |
0.2552 | 6600 | 0.0 | - |
0.2571 | 6650 | 0.0 | - |
0.2591 | 6700 | 0.0 | - |
0.2610 | 6750 | 0.0 | - |
0.2629 | 6800 | 0.0 | - |
0.2649 | 6850 | 0.0 | - |
0.2668 | 6900 | 0.0 | - |
0.2687 | 6950 | 0.0 | - |
0.2707 | 7000 | 0.0 | - |
0.2726 | 7050 | 0.0 | - |
0.2745 | 7100 | 0.0 | - |
0.2765 | 7150 | 0.0 | - |
0.2784 | 7200 | 0.0 | - |
0.2803 | 7250 | 0.0 | - |
0.2823 | 7300 | 0.0 | - |
0.2842 | 7350 | 0.0 | - |
0.2861 | 7400 | 0.0 | - |
0.2881 | 7450 | 0.0 | - |
0.2900 | 7500 | 0.0 | - |
0.2919 | 7550 | 0.0 | - |
0.2939 | 7600 | 0.0 | - |
0.2958 | 7650 | 0.0 | - |
0.2977 | 7700 | 0.0 | - |
0.2997 | 7750 | 0.0 | - |
0.3016 | 7800 | 0.0 | - |
0.3035 | 7850 | 0.0 | - |
0.3055 | 7900 | 0.0 | - |
0.3074 | 7950 | 0.0 | - |
0.3093 | 8000 | 0.0 | - |
0.3113 | 8050 | 0.0 | - |
0.3132 | 8100 | 0.0 | - |
0.3151 | 8150 | 0.0 | - |
0.3171 | 8200 | 0.0 | - |
0.3190 | 8250 | 0.0 | - |
0.3209 | 8300 | 0.0 | - |
0.3229 | 8350 | 0.0 | - |
0.3248 | 8400 | 0.0 | - |
0.3267 | 8450 | 0.0 | - |
0.3287 | 8500 | 0.0 | - |
0.3306 | 8550 | 0.0 | - |
0.3325 | 8600 | 0.0 | - |
0.3345 | 8650 | 0.0 | - |
0.3364 | 8700 | 0.0 | - |
0.3383 | 8750 | 0.0 | - |
0.3403 | 8800 | 0.0 | - |
0.3422 | 8850 | 0.0 | - |
0.3441 | 8900 | 0.0 | - |
0.3461 | 8950 | 0.0 | - |
0.3480 | 9000 | 0.0 | - |
0.3499 | 9050 | 0.0 | - |
0.3519 | 9100 | 0.0 | - |
0.3538 | 9150 | 0.0 | - |
0.3557 | 9200 | 0.0 | - |
0.3577 | 9250 | 0.0 | - |
0.3596 | 9300 | 0.0 | - |
0.3615 | 9350 | 0.0 | - |
0.3635 | 9400 | 0.0 | - |
0.3654 | 9450 | 0.0081 | - |
0.3673 | 9500 | 0.0078 | - |
0.3693 | 9550 | 0.0104 | - |
0.3712 | 9600 | 0.0034 | - |
0.3731 | 9650 | 0.0009 | - |
0.3751 | 9700 | 0.0006 | - |
0.3770 | 9750 | 0.0033 | - |
0.3789 | 9800 | 0.0007 | - |
0.3809 | 9850 | 0.0 | - |
0.3828 | 9900 | 0.0 | - |
0.3847 | 9950 | 0.0 | - |
0.3867 | 10000 | 0.0006 | - |
0.3886 | 10050 | 0.0 | - |
0.3905 | 10100 | 0.0 | - |
0.3925 | 10150 | 0.0 | - |
0.3944 | 10200 | 0.0 | - |
0.3963 | 10250 | 0.0 | - |
0.3983 | 10300 | 0.0 | - |
0.4002 | 10350 | 0.0 | - |
0.4021 | 10400 | 0.0 | - |
0.4041 | 10450 | 0.0019 | - |
0.4060 | 10500 | 0.0035 | - |
0.4080 | 10550 | 0.0012 | - |
0.4099 | 10600 | 0.0 | - |
0.4118 | 10650 | 0.0 | - |
0.4138 | 10700 | 0.0 | - |
0.4157 | 10750 | 0.0 | - |
0.4176 | 10800 | 0.0 | - |
0.4196 | 10850 | 0.0 | - |
0.4215 | 10900 | 0.0 | - |
0.4234 | 10950 | 0.0006 | - |
0.4254 | 11000 | 0.0 | - |
0.4273 | 11050 | 0.0 | - |
0.4292 | 11100 | 0.0 | - |
0.4312 | 11150 | 0.0 | - |
0.4331 | 11200 | 0.0 | - |
0.4350 | 11250 | 0.0 | - |
0.4370 | 11300 | 0.0 | - |
0.4389 | 11350 | 0.0 | - |
0.4408 | 11400 | 0.0 | - |
0.4428 | 11450 | 0.0 | - |
0.4447 | 11500 | 0.0 | - |
0.4466 | 11550 | 0.0 | - |
0.4486 | 11600 | 0.0 | - |
0.4505 | 11650 | 0.0 | - |
0.4524 | 11700 | 0.0 | - |
0.4544 | 11750 | 0.0 | - |
0.4563 | 11800 | 0.0 | - |
0.4582 | 11850 | 0.0 | - |
0.4602 | 11900 | 0.0 | - |
0.4621 | 11950 | 0.0 | - |
0.4640 | 12000 | 0.0 | - |
0.4660 | 12050 | 0.0 | - |
0.4679 | 12100 | 0.0 | - |
0.4698 | 12150 | 0.0 | - |
0.4718 | 12200 | 0.0 | - |
0.4737 | 12250 | 0.0 | - |
0.4756 | 12300 | 0.0 | - |
0.4776 | 12350 | 0.0 | - |
0.4795 | 12400 | 0.0 | - |
0.4814 | 12450 | 0.0 | - |
0.4834 | 12500 | 0.0 | - |
0.4853 | 12550 | 0.0 | - |
0.4872 | 12600 | 0.0 | - |
0.4892 | 12650 | 0.0 | - |
0.4911 | 12700 | 0.0 | - |
0.4930 | 12750 | 0.0 | - |
0.4950 | 12800 | 0.0 | - |
0.4969 | 12850 | 0.0 | - |
0.4988 | 12900 | 0.0 | - |
0.5008 | 12950 | 0.0 | - |
0.5027 | 13000 | 0.0 | - |
0.5046 | 13050 | 0.0 | - |
0.5066 | 13100 | 0.0 | - |
0.5085 | 13150 | 0.0 | - |
0.5104 | 13200 | 0.0 | - |
0.5124 | 13250 | 0.0 | - |
0.5143 | 13300 | 0.0 | - |
0.5162 | 13350 | 0.0 | - |
0.5182 | 13400 | 0.0 | - |
0.5201 | 13450 | 0.0 | - |
0.5220 | 13500 | 0.0 | - |
0.5240 | 13550 | 0.0 | - |
0.5259 | 13600 | 0.0 | - |
0.5278 | 13650 | 0.0 | - |
0.5298 | 13700 | 0.0 | - |
0.5317 | 13750 | 0.0 | - |
0.5336 | 13800 | 0.0 | - |
0.5356 | 13850 | 0.0 | - |
0.5375 | 13900 | 0.0 | - |
0.5394 | 13950 | 0.0 | - |
0.5414 | 14000 | 0.0 | - |
0.5433 | 14050 | 0.0 | - |
0.5452 | 14100 | 0.0 | - |
0.5472 | 14150 | 0.0 | - |
0.5491 | 14200 | 0.0 | - |
0.5510 | 14250 | 0.0 | - |
0.5530 | 14300 | 0.0 | - |
0.5549 | 14350 | 0.0 | - |
0.5568 | 14400 | 0.0 | - |
0.5588 | 14450 | 0.0 | - |
0.5607 | 14500 | 0.0 | - |
0.5626 | 14550 | 0.0 | - |
0.5646 | 14600 | 0.0 | - |
0.5665 | 14650 | 0.0 | - |
0.5684 | 14700 | 0.0 | - |
0.5704 | 14750 | 0.0 | - |
0.5723 | 14800 | 0.0 | - |
0.5742 | 14850 | 0.0 | - |
0.5762 | 14900 | 0.0 | - |
0.5781 | 14950 | 0.0 | - |
0.5800 | 15000 | 0.0 | - |
0.5820 | 15050 | 0.0 | - |
0.5839 | 15100 | 0.0 | - |
0.5858 | 15150 | 0.0 | - |
0.5878 | 15200 | 0.0 | - |
0.5897 | 15250 | 0.0 | - |
0.5916 | 15300 | 0.0 | - |
0.5936 | 15350 | 0.0 | - |
0.5955 | 15400 | 0.0 | - |
0.5974 | 15450 | 0.0 | - |
0.5994 | 15500 | 0.0 | - |
0.6013 | 15550 | 0.0 | - |
0.6032 | 15600 | 0.0 | - |
0.6052 | 15650 | 0.0 | - |
0.6071 | 15700 | 0.0 | - |
0.6090 | 15750 | 0.0 | - |
0.6110 | 15800 | 0.0 | - |
0.6129 | 15850 | 0.0 | - |
0.6148 | 15900 | 0.0 | - |
0.6168 | 15950 | 0.0 | - |
0.6187 | 16000 | 0.0 | - |
0.6206 | 16050 | 0.0 | - |
0.6226 | 16100 | 0.0 | - |
0.6245 | 16150 | 0.0 | - |
0.6264 | 16200 | 0.0 | - |
0.6284 | 16250 | 0.0 | - |
0.6303 | 16300 | 0.0 | - |
0.6322 | 16350 | 0.0 | - |
0.6342 | 16400 | 0.0 | - |
0.6361 | 16450 | 0.0 | - |
0.6380 | 16500 | 0.0 | - |
0.6400 | 16550 | 0.0 | - |
0.6419 | 16600 | 0.0 | - |
0.6438 | 16650 | 0.0 | - |
0.6458 | 16700 | 0.0 | - |
0.6477 | 16750 | 0.0 | - |
0.6496 | 16800 | 0.0 | - |
0.6516 | 16850 | 0.0 | - |
0.6535 | 16900 | 0.0 | - |
0.6554 | 16950 | 0.0 | - |
0.6574 | 17000 | 0.0 | - |
0.6593 | 17050 | 0.0 | - |
0.6612 | 17100 | 0.0 | - |
0.6632 | 17150 | 0.0 | - |
0.6651 | 17200 | 0.0 | - |
0.6670 | 17250 | 0.0 | - |
0.6690 | 17300 | 0.0 | - |
0.6709 | 17350 | 0.0 | - |
0.6728 | 17400 | 0.0 | - |
0.6748 | 17450 | 0.0 | - |
0.6767 | 17500 | 0.0 | - |
0.6786 | 17550 | 0.0 | - |
0.6806 | 17600 | 0.0 | - |
0.6825 | 17650 | 0.0 | - |
0.6844 | 17700 | 0.0 | - |
0.6864 | 17750 | 0.0 | - |
0.6883 | 17800 | 0.0 | - |
0.6902 | 17850 | 0.0 | - |
0.6922 | 17900 | 0.0 | - |
0.6941 | 17950 | 0.0 | - |
0.6960 | 18000 | 0.0 | - |
0.6980 | 18050 | 0.0 | - |
0.6999 | 18100 | 0.0 | - |
0.7018 | 18150 | 0.0 | - |
0.7038 | 18200 | 0.0 | - |
0.7057 | 18250 | 0.0 | - |
0.7076 | 18300 | 0.0 | - |
0.7096 | 18350 | 0.0 | - |
0.7115 | 18400 | 0.0 | - |
0.7134 | 18450 | 0.0 | - |
0.7154 | 18500 | 0.0 | - |
0.7173 | 18550 | 0.0 | - |
0.7192 | 18600 | 0.0 | - |
0.7212 | 18650 | 0.0 | - |
0.7231 | 18700 | 0.0 | - |
0.7250 | 18750 | 0.0 | - |
0.7270 | 18800 | 0.0 | - |
0.7289 | 18850 | 0.0 | - |
0.7308 | 18900 | 0.0 | - |
0.7328 | 18950 | 0.0 | - |
0.7347 | 19000 | 0.0 | - |
0.7366 | 19050 | 0.0 | - |
0.7386 | 19100 | 0.0 | - |
0.7405 | 19150 | 0.0 | - |
0.7424 | 19200 | 0.0 | - |
0.7444 | 19250 | 0.0 | - |
0.7463 | 19300 | 0.0 | - |
0.7482 | 19350 | 0.0 | - |
0.7502 | 19400 | 0.0 | - |
0.7521 | 19450 | 0.0 | - |
0.7540 | 19500 | 0.0 | - |
0.7560 | 19550 | 0.0 | - |
0.7579 | 19600 | 0.0 | - |
0.7598 | 19650 | 0.0 | - |
0.7618 | 19700 | 0.0 | - |
0.7637 | 19750 | 0.0 | - |
0.7656 | 19800 | 0.0 | - |
0.7676 | 19850 | 0.0 | - |
0.7695 | 19900 | 0.0 | - |
0.7714 | 19950 | 0.0 | - |
0.7734 | 20000 | 0.0 | - |
0.7753 | 20050 | 0.0 | - |
0.7772 | 20100 | 0.0 | - |
0.7792 | 20150 | 0.0 | - |
0.7811 | 20200 | 0.0 | - |
0.7830 | 20250 | 0.0 | - |
0.7850 | 20300 | 0.0 | - |
0.7869 | 20350 | 0.0 | - |
0.7888 | 20400 | 0.0 | - |
0.7908 | 20450 | 0.0 | - |
0.7927 | 20500 | 0.0 | - |
0.7946 | 20550 | 0.0 | - |
0.7966 | 20600 | 0.0 | - |
0.7985 | 20650 | 0.0 | - |
0.8004 | 20700 | 0.0 | - |
0.8024 | 20750 | 0.0 | - |
0.8043 | 20800 | 0.0 | - |
0.8062 | 20850 | 0.0 | - |
0.8082 | 20900 | 0.0 | - |
0.8101 | 20950 | 0.0 | - |
0.8120 | 21000 | 0.0 | - |
0.8140 | 21050 | 0.0 | - |
0.8159 | 21100 | 0.0 | - |
0.8178 | 21150 | 0.0 | - |
0.8198 | 21200 | 0.0002 | - |
0.8217 | 21250 | 0.0027 | - |
0.8236 | 21300 | 0.0019 | - |
0.8256 | 21350 | 0.0 | - |
0.8275 | 21400 | 0.0 | - |
0.8294 | 21450 | 0.0 | - |
0.8314 | 21500 | 0.0 | - |
0.8333 | 21550 | 0.0011 | - |
0.8352 | 21600 | 0.0 | - |
0.8372 | 21650 | 0.0 | - |
0.8391 | 21700 | 0.0 | - |
0.8410 | 21750 | 0.0 | - |
0.8430 | 21800 | 0.0 | - |
0.8449 | 21850 | 0.0 | - |
0.8468 | 21900 | 0.0 | - |
0.8488 | 21950 | 0.0006 | - |
0.8507 | 22000 | 0.0 | - |
0.8526 | 22050 | 0.0 | - |
0.8546 | 22100 | 0.0002 | - |
0.8565 | 22150 | 0.0 | - |
0.8584 | 22200 | 0.0011 | - |
0.8604 | 22250 | 0.0 | - |
0.8623 | 22300 | 0.0 | - |
0.8642 | 22350 | 0.0 | - |
0.8662 | 22400 | 0.0 | - |
0.8681 | 22450 | 0.0 | - |
0.8700 | 22500 | 0.0 | - |
0.8720 | 22550 | 0.0 | - |
0.8739 | 22600 | 0.0 | - |
0.8758 | 22650 | 0.0 | - |
0.8778 | 22700 | 0.0 | - |
0.8797 | 22750 | 0.0 | - |
0.8816 | 22800 | 0.0 | - |
0.8836 | 22850 | 0.0 | - |
0.8855 | 22900 | 0.0 | - |
0.8874 | 22950 | 0.0 | - |
0.8894 | 23000 | 0.0 | - |
0.8913 | 23050 | 0.0 | - |
0.8932 | 23100 | 0.0 | - |
0.8952 | 23150 | 0.0 | - |
0.8971 | 23200 | 0.0 | - |
0.8990 | 23250 | 0.0 | - |
0.9010 | 23300 | 0.0 | - |
0.9029 | 23350 | 0.0 | - |
0.9048 | 23400 | 0.0 | - |
0.9068 | 23450 | 0.0 | - |
0.9087 | 23500 | 0.0 | - |
0.9106 | 23550 | 0.0 | - |
0.9126 | 23600 | 0.0 | - |
0.9145 | 23650 | 0.0 | - |
0.9164 | 23700 | 0.0 | - |
0.9184 | 23750 | 0.0 | - |
0.9203 | 23800 | 0.0 | - |
0.9222 | 23850 | 0.0 | - |
0.9242 | 23900 | 0.0 | - |
0.9261 | 23950 | 0.0 | - |
0.9280 | 24000 | 0.0 | - |
0.9300 | 24050 | 0.0 | - |
0.9319 | 24100 | 0.0 | - |
0.9338 | 24150 | 0.0 | - |
0.9358 | 24200 | 0.0 | - |
0.9377 | 24250 | 0.0 | - |
0.9396 | 24300 | 0.0 | - |
0.9416 | 24350 | 0.0 | - |
0.9435 | 24400 | 0.0 | - |
0.9454 | 24450 | 0.0 | - |
0.9474 | 24500 | 0.0 | - |
0.9493 | 24550 | 0.0 | - |
0.9512 | 24600 | 0.0 | - |
0.9532 | 24650 | 0.0 | - |
0.9551 | 24700 | 0.0 | - |
0.9570 | 24750 | 0.0 | - |
0.9590 | 24800 | 0.0 | - |
0.9609 | 24850 | 0.0 | - |
0.9628 | 24900 | 0.0 | - |
0.9648 | 24950 | 0.0 | - |
0.9667 | 25000 | 0.0 | - |
0.9686 | 25050 | 0.0 | - |
0.9706 | 25100 | 0.0 | - |
0.9725 | 25150 | 0.0 | - |
0.9744 | 25200 | 0.0 | - |
0.9764 | 25250 | 0.0 | - |
0.9783 | 25300 | 0.0 | - |
0.9802 | 25350 | 0.0 | - |
0.9822 | 25400 | 0.0 | - |
0.9841 | 25450 | 0.0 | - |
0.9860 | 25500 | 0.0 | - |
0.9880 | 25550 | 0.0 | - |
0.9899 | 25600 | 0.0 | - |
0.9918 | 25650 | 0.0 | - |
0.9938 | 25700 | 0.0 | - |
0.9957 | 25750 | 0.0 | - |
0.9976 | 25800 | 0.0 | - |
0.9996 | 25850 | 0.0 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.42.2
- PyTorch: 2.5.1+cu121
- Datasets: 3.2.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}