laurentiubp's picture
Update README.md
7b0cfcc verified
---
license: llama3
base_model: catallama/CataLlama-v0.1-Instruct-SFT
tags:
- llama
- llama-3
- Catalan
model-index:
- name: catallama/CataLlama-v0.1-Instruct-DPO
results: []
datasets:
- catallama/Catalan-DPO
language:
- ca
- en
pipeline_tag: text-generation
---
# NOTE: [CataLlama-v0.2](https://huggingface.co./catallama/CataLlama-v0.2-Instruct-SFT-DPO-Merged) is out. Please use that one instead.
![](https://huggingface.co./catallama/CataLlama-v0.1-Instruct-DPO/resolve/main/CataLlama-v0.1.png)
# NOTE: [CataLlama-v0.2](https://huggingface.co./catallama/CataLlama-v0.2-Instruct-SFT-DPO-Merged) is out. Please use that one instead.
# CataLlama-v0.1-Instruct-DPO
**CataLlama-v0.1-Instruct-DPO** is a DPO fine-tune of [catallama/CataLlama-v0.1-Instruct-SFT](https://huggingface.co./catallama/CataLlama-v0.1-Instruct-SFT) on the [catallama/Catalan-DPO](https://huggingface.co./datasets/catallama/Catalan-DPO) dataset.
CataLlama was trained on roughly **445 million new tokens** in three separate stages. This is the 3rd and final stage of the training.
The model shows improved proficiency with the Catalan language.
**This is an instruction fine-tuned model, optimised with DPO, proficient on the following tasks in Catalan**
- *Information extraction (suitable for RAG)*
- *Named Entity Recognition (NER)*
- *Translation from English to Catalan and Catalan to English*
- *Summarization - both short form and long form*
- *Sentiment analysis*
**Model developers** [Laurentiu Petrea](https://www.linkedin.com/in/laurentiupetrea/) based on Llama-3 from Meta.
**Model Architecture** CataLlama is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and direct preference optimisation (DPO) to align with human preferences for helpfulness and safety.
**License** The model uses the llama-3 license available at: [https://llama.meta.com/llama3/license](https://llama.meta.com/llama3/license)
## Benchmarks
| Benchmark | Value |
| ------------------ | ------ |
| MMLU 5 shot | 47.34 |
| GSM8K cot 8 shot | 43.29 |
### Use with transformers
See the snippet below for usage with Transformers:
**The model follows the same prompt template as Llama-3 Instruct**
```python
import transformers
import torch
model_id = "catallama/CataLlama-v0.1-Instruct-DPO"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{"role": "user", "content": "Ei com estàs avui?"},
]
prompt = pipeline.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
outputs = pipeline(
prompt,
max_new_tokens=1024,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
print(outputs[0]["generated_text"][len(prompt):])
```
**Actual Inference Examples**
```
Prompt: Pot Donald Trump sopar amb Juli Cèsar?
Answer: No, Donald Trump no podria sopar amb Juli Cèsar, ja que Juli Cèsar va morir fa més de 2.000 anys i, per tant, no està viu per a poder sopar amb ell. A més, Juli Cèsar va ser un personatge històric i polític de l'antiga Roma, mentre que Donald Trump és el 45è president dels Estats Units, personatges que pertanyen a dues èpoques i cultures diferents. Per tant, la idea de que poguessin sopar junts és absurda i no té cap sentit històric ni lògic.
```
```
Prompt: A quina velocitat poden volar els cocodrils?
Answer: Els cocodrils no poden volar, ja que no tenen ales ni cap estructura que els permeti elevar-se per l'aire. Aquestes criatures aquàtiques depenen de la seva força i agilitat per moure's i caçar preses a terra ferma o al riu. No obstant això, poden assolir velocitats notables quan es tracta de fugir o perseguir una presa. El cocodril més ràpid, el cocodril negre africà, pot arribar a assolir velocitats de fins a 40 km/h en terra ferma, tot i que la seva velocitat a l'aigua és molt menor.
```
```
Prompt: Explica pas a pas com resoldre l'equació següent: 2x + 10 = 0
Answer:
Per resoldre l'equació 2x + 10 = 0, segueix els passos següents:
1. Aïllar la variable: per fer-ho, hem de restar 10 de tots dos costats de l'equació. Així, tenim:
2x = -10
2. Dividir tots dos costats per 2: això ens permet obtenir una equació en forma d'una sola incògnita. Així, tenim:
x = -5
3. Comprovar: sempre és recomanable comprovar la solució en l'equació original. Substituint x = -5 en 2x + 10 = 0, obtenim:
2(-5) + 10 = -10 + 10 = 0
Com que l'equació es compleix, la solució x = -5 és vàlida.
```
## Training procedure
The model was trained **with the same prompt template of Llama-3 Instruct**.
The model was trained for two epochs on **4x A100 80GB GPUs using DeepSpeed ZeRO** State-3 without CPU offloading.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- distributed_type: multi-GPU
- num_devices: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 1
## Intended Use
**Note:** This model is not intended to beat benchmarks, but to demonstrate techniques for augmenting LLMs on new languages and preserve rare languages as part of our world heritage.
**Intended Use Cases** Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks.
**Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English**.
**Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy.