my_awesome_wnut_model
This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2770
- Precision: 0.5576
- Recall: 0.3095
- F1: 0.3981
- Accuracy: 0.9405
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 213 | 0.2933 | 0.4485 | 0.2141 | 0.2898 | 0.9361 |
No log | 2.0 | 426 | 0.2770 | 0.5576 | 0.3095 | 0.3981 | 0.9405 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 111
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for casual/my_awesome_wnut_model
Base model
distilbert/distilbert-base-uncased