cassador's picture
Add new SentenceTransformer model.
5734bb2 verified
metadata
language:
  - id
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:10000
  - loss:SoftmaxLoss
base_model: indobenchmark/indobert-base-p2
datasets:
  - afaji/indonli
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
widget:
  - source_sentence: >-
      "Berbagai macam jenis minuman sehat untuk mengembalikan ion ataupun
      mengandung vitamin, dapat kita temui dengan mudah di sekitar."
    sentences:
      - >-
        Moody's tidak memiliki metrik peringkat untuk penerbit sekuritas yang
        dikenai pajak.
      - Lupa olahraga adalah alasan yang selalu digunakan untuk tak berolahraga.
      - Minuman sehat sulit ditemui.
  - source_sentence: >-
      Mayweather menepis anggapan bahwa McGregor yang merupakan petarung kidal
      mungkin menyebabkan masalah baginya.
    sentences:
      - Cimahi Selatan merupakan sebuah Kecamatan di Kota Cimahi.
      - >-
        Masyarakat umum dilibatkan untuk memberikan respon dalam acara dengar
        pendapat CRTC.
      - McGregor dan Mayweather pernah bertarung dengan sengit.
  - source_sentence: >-
      Wonosobo adalah salah satu kabupaten yang terdapat di Provinsi Jawa
      Tengah.
    sentences:
      - Tidak terdapat kabupaten di Provinsi Jawa Tengah.
      - Nogizaka46 sekarang sudah merilis 25 singel.
      - Joko Driyono adalah Wakil Ketua Umum PSSI.
  - source_sentence: Bangunan ini digunakan untuk penjualan berbagai material. '
    sentences:
      - Istri bisa mengidamkan makanan yang mudah dicari.
      - >-
        Saluran telepon tidak digunakan oleh FastNet dalam menyediakan akses
        internet.
      - Bangunan ini digunakan untuk penjualan.
  - source_sentence: >-
      Set album musik pengiring seri film Harry Potter akan dirilis dalam versi
      baru.
    sentences:
      - Seri film Harry Potter memiliki set album musik pengiring.
      - Daya tahan tubuh bayi tidak terjaga walaupun diberi ASI.
      - Laga dan kolosal adalah genre film.
pipeline_tag: sentence-similarity
model-index:
  - name: SentenceTransformer based on indobenchmark/indobert-base-p2
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev
          type: sts-dev
        metrics:
          - type: pearson_cosine
            value: 0.3021139089985203
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.30301169986128346
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.2767840491173264
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.2725949754810958
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.3071661849384816
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.3044966278223258
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.3039090779569512
            name: Pearson Dot
          - type: spearman_dot
            value: 0.3047234168200123
            name: Spearman Dot
          - type: pearson_max
            value: 0.3071661849384816
            name: Pearson Max
          - type: spearman_max
            value: 0.3047234168200123
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test
          type: sts-test
        metrics:
          - type: pearson_cosine
            value: 0.10382066164158449
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.09693567465932618
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.07492996229311771
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.07823414156216839
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.09422022261567607
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.09902189422521299
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.10695495102872325
            name: Pearson Dot
          - type: spearman_dot
            value: 0.09978448101169902
            name: Spearman Dot
          - type: pearson_max
            value: 0.10695495102872325
            name: Pearson Max
          - type: spearman_max
            value: 0.09978448101169902
            name: Spearman Max

SentenceTransformer based on indobenchmark/indobert-base-p2

This is a sentence-transformers model finetuned from indobenchmark/indobert-base-p2 on the afaji/indonli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: indobenchmark/indobert-base-p2
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: id

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("cassador/indobert-base-p2-nli-v2")
# Run inference
sentences = [
    'Set album musik pengiring seri film Harry Potter akan dirilis dalam versi baru.',
    'Seri film Harry Potter memiliki set album musik pengiring.',
    'Laga dan kolosal adalah genre film.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.3021
spearman_cosine 0.303
pearson_manhattan 0.2768
spearman_manhattan 0.2726
pearson_euclidean 0.3072
spearman_euclidean 0.3045
pearson_dot 0.3039
spearman_dot 0.3047
pearson_max 0.3072
spearman_max 0.3047

Semantic Similarity

Metric Value
pearson_cosine 0.1038
spearman_cosine 0.0969
pearson_manhattan 0.0749
spearman_manhattan 0.0782
pearson_euclidean 0.0942
spearman_euclidean 0.099
pearson_dot 0.107
spearman_dot 0.0998
pearson_max 0.107
spearman_max 0.0998

Training Details

Training Dataset

afaji/indonli

  • Dataset: afaji/indonli
  • Size: 10,000 training samples
  • Columns: premise, hypothesis, and label
  • Approximate statistics based on the first 1000 samples:
    premise hypothesis label
    type string string int
    details
    • min: 12 tokens
    • mean: 29.73 tokens
    • max: 179 tokens
    • min: 6 tokens
    • mean: 11.93 tokens
    • max: 35 tokens
    • 0: ~68.60%
    • 1: ~31.40%
  • Samples:
    premise hypothesis label
    Presiden Joko Widodo (Jokowi) menyampaikan prediksi bahwa wabah virus Corona (COVID-19) di Indonesia akan selesai akhir tahun ini. Prediksi akhir wabah tidak disampaikan Jokowi. 0
    Meski biasanya hanya digunakan di fasilitas kesehatan, saat ini masker dan sarung tangan sekali pakai banyak dipakai di tingkat rumah tangga. Masker sekali pakai banyak dipakai di tingkat rumah tangga. 1
    Data dari Nielsen Music mencatat, "Joanne" telah terjual 201 ribu kopi di akhir minggu ini, seperti dilansir aceshowbiz.com. Nielsen Music mencatat pada akhir minggu ini. 0
  • Loss: SoftmaxLoss

Evaluation Dataset

afaji/indonli

  • Dataset: afaji/indonli
  • Size: 2,000 evaluation samples
  • Columns: premise, hypothesis, and label
  • Approximate statistics based on the first 1000 samples:
    premise hypothesis label
    type string string int
    details
    • min: 9 tokens
    • mean: 28.09 tokens
    • max: 179 tokens
    • min: 6 tokens
    • mean: 12.01 tokens
    • max: 24 tokens
    • 0: ~63.00%
    • 1: ~37.00%
  • Samples:
    premise hypothesis label
    Manuskrip tersebut berisi tiga catatan yang menceritakan bagaimana peristiwa jatuhnya meteorit serta laporan kematian akibat kejadian tersebut seperti dilansir dari Science Alert, Sabtu (25/4/2020). Manuskrip tersebut tidak mencatat laporan kematian. 0
    Dilansir dari Business Insider, menurut observasi dari Mauna Loa Observatory di Hawaii pada karbon dioksida (CO2) di level mencapai 410 ppm tidak langsung memberikan efek pada pernapasan, karena tubuh manusia juga masih membutuhkan CO2 dalam kadar tertentu. Tidak ada observasi yang pernah dilansir oleh Business Insider. 0
    Perekonomian Jakarta terutama ditunjang oleh sektor perdagangan, jasa, properti, industri kreatif, dan keuangan. Sektor jasa memberi pengaruh lebih besar daripada industri kreatif dalam perekonomian Jakarta. 0
  • Loss: SoftmaxLoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • learning_rate: 1e-05
  • num_train_epochs: 10
  • warmup_ratio: 0.001
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 1e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.001
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss loss sts-dev_spearman_cosine sts-test_spearman_cosine
0 0 - - 0.1928 -
0.04 100 1.1407 - - -
0.08 200 0.7456 - - -
0.12 300 0.6991 - - -
0.16 400 0.6653 - - -
0.2 500 0.6317 - - -
0.24 600 0.5975 - - -
0.28 700 0.5955 - - -
0.32 800 0.6168 - - -
0.36 900 0.5851 - - -
0.4 1000 0.591 - - -
0.44 1100 0.6063 - - -
0.48 1200 0.6122 - - -
0.52 1300 0.5881 - - -
0.56 1400 0.59 - - -
0.6 1500 0.5715 - - -
0.64 1600 0.5725 - - -
0.68 1700 0.5771 - - -
0.72 1800 0.5935 - - -
0.76 1900 0.584 - - -
0.8 2000 0.5829 - - -
0.84 2100 0.5507 - - -
0.88 2200 0.5447 - - -
0.92 2300 0.6059 - - -
0.96 2400 0.5389 - - -
1.0 2500 0.639 0.5432 0.4007 -
1.04 2600 0.463 - - -
1.08 2700 0.4936 - - -
1.12 2800 0.4966 - - -
1.16 2900 0.4588 - - -
1.2 3000 0.5148 - - -
1.24 3100 0.5043 - - -
1.28 3200 0.5048 - - -
1.32 3300 0.4803 - - -
1.3600 3400 0.465 - - -
1.4 3500 0.5133 - - -
1.44 3600 0.5505 - - -
1.48 3700 0.4498 - - -
1.52 3800 0.5418 - - -
1.56 3900 0.5268 - - -
1.6 4000 0.4546 - - -
1.6400 4100 0.5279 - - -
1.6800 4200 0.5309 - - -
1.72 4300 0.487 - - -
1.76 4400 0.5371 - - -
1.8 4500 0.5097 - - -
1.8400 4600 0.5242 - - -
1.88 4700 0.4583 - - -
1.92 4800 0.4923 - - -
1.96 4900 0.5028 - - -
2.0 5000 0.5139 0.6274 0.4335 -
2.04 5100 0.322 - - -
2.08 5200 0.389 - - -
2.12 5300 0.3633 - - -
2.16 5400 0.3868 - - -
2.2 5500 0.3798 - - -
2.24 5600 0.4385 - - -
2.2800 5700 0.3965 - - -
2.32 5800 0.3895 - - -
2.36 5900 0.4484 - - -
2.4 6000 0.3452 - - -
2.44 6100 0.3905 - - -
2.48 6200 0.376 - - -
2.52 6300 0.4986 - - -
2.56 6400 0.3732 - - -
2.6 6500 0.3632 - - -
2.64 6600 0.3915 - - -
2.68 6700 0.4394 - - -
2.7200 6800 0.3852 - - -
2.76 6900 0.3984 - - -
2.8 7000 0.426 - - -
2.84 7100 0.3274 - - -
2.88 7200 0.4673 - - -
2.92 7300 0.4599 - - -
2.96 7400 0.4304 - - -
3.0 7500 0.4151 0.8967 0.4007 -
3.04 7600 0.2345 - - -
3.08 7700 0.1807 - - -
3.12 7800 0.2984 - - -
3.16 7900 0.2357 - - -
3.2 8000 0.4506 - - -
3.24 8100 0.2178 - - -
3.2800 8200 0.2654 - - -
3.32 8300 0.2863 - - -
3.36 8400 0.2626 - - -
3.4 8500 0.3281 - - -
3.44 8600 0.2555 - - -
3.48 8700 0.4245 - - -
3.52 8800 0.2368 - - -
3.56 8900 0.3288 - - -
3.6 9000 0.3417 - - -
3.64 9100 0.3249 - - -
3.68 9200 0.3378 - - -
3.7200 9300 0.233 - - -
3.76 9400 0.3215 - - -
3.8 9500 0.251 - - -
3.84 9600 0.3138 - - -
3.88 9700 0.3081 - - -
3.92 9800 0.3875 - - -
3.96 9900 0.3231 - - -
4.0 10000 0.2119 1.4983 0.4129 -
4.04 10100 0.1323 - - -
4.08 10200 0.2222 - - -
4.12 10300 0.2005 - - -
4.16 10400 0.127 - - -
4.2 10500 0.1052 - - -
4.24 10600 0.1657 - - -
4.28 10700 0.2305 - - -
4.32 10800 0.1048 - - -
4.36 10900 0.2081 - - -
4.4 11000 0.201 - - -
4.44 11100 0.1515 - - -
4.48 11200 0.2112 - - -
4.52 11300 0.1936 - - -
4.5600 11400 0.1578 - - -
4.6 11500 0.2551 - - -
4.64 11600 0.2888 - - -
4.68 11700 0.128 - - -
4.72 11800 0.2172 - - -
4.76 11900 0.114 - - -
4.8 12000 0.2135 - - -
4.84 12100 0.2421 - - -
4.88 12200 0.2392 - - -
4.92 12300 0.1478 - - -
4.96 12400 0.1901 - - -
5.0 12500 0.2219 1.9582 0.3469 -
5.04 12600 0.1586 - - -
5.08 12700 0.1587 - - -
5.12 12800 0.0663 - - -
5.16 12900 0.0703 - - -
5.2 13000 0.0783 - - -
5.24 13100 0.1143 - - -
5.28 13200 0.1155 - - -
5.32 13300 0.0661 - - -
5.36 13400 0.0935 - - -
5.4 13500 0.1344 - - -
5.44 13600 0.1031 - - -
5.48 13700 0.1294 - - -
5.52 13800 0.103 - - -
5.5600 13900 0.0739 - - -
5.6 14000 0.1477 - - -
5.64 14100 0.1171 - - -
5.68 14200 0.1504 - - -
5.72 14300 0.1122 - - -
5.76 14400 0.1279 - - -
5.8 14500 0.0813 - - -
5.84 14600 0.1372 - - -
5.88 14700 0.1615 - - -
5.92 14800 0.1944 - - -
5.96 14900 0.0436 - - -
6.0 15000 0.1195 2.2220 0.3559 -
0.08 100 0.0844 - - -
0.16 200 0.1357 - - -
0.24 300 0.1382 - - -
0.32 400 0.2091 - - -
0.4 500 0.2351 - - -
0.48 600 0.2976 - - -
0.56 700 0.3408 - - -
0.64 800 0.2656 - - -
0.72 900 0.3183 - - -
0.8 1000 0.2513 - - -
0.88 1100 0.2293 - - -
0.96 1200 0.3241 - - -
1.0 1250 - 1.1813 0.3495 -
0.3195 100 0.6132 - - -
0.6390 200 0.1554 - - -
0.9585 300 0.1366 - - -
1.0 313 - 1.2867 0.3839 -
0.08 100 0.2713 - - -
0.16 200 0.1273 - - -
0.24 300 0.0883 - - -
0.32 400 0.0749 - - -
0.08 100 0.0653 - - -
0.16 200 0.0311 - - -
0.24 300 0.0368 - - -
0.32 400 0.0259 - - -
0.4 500 0.059 - - -
0.48 600 0.046 - - -
0.56 700 0.1266 - - -
0.64 800 0.0661 - - -
0.72 900 0.0676 - - -
0.8 1000 0.0759 - - -
0.88 1100 0.0527 - - -
0.96 1200 0.1038 - - -
1.0 1250 - 2.2411 0.3892 -
1.04 1300 0.0456 - - -
1.12 1400 0.1363 - - -
1.2 1500 0.1398 - - -
1.28 1600 0.1237 - - -
1.3600 1700 0.123 - - -
1.44 1800 0.1893 - - -
1.52 1900 0.1192 - - -
1.6 2000 0.1347 - - -
1.6800 2100 0.0937 - - -
1.76 2200 0.1506 - - -
1.8400 2300 0.1366 - - -
1.92 2400 0.1194 - - -
2.0 2500 0.1485 2.1340 0.3245 -
2.08 2600 0.0485 - - -
2.16 2700 0.0579 - - -
2.24 2800 0.0932 - - -
2.32 2900 0.0743 - - -
2.4 3000 0.0783 - - -
2.48 3100 0.0918 - - -
2.56 3200 0.0973 - - -
2.64 3300 0.0623 - - -
2.7200 3400 0.1284 - - -
2.8 3500 0.1247 - - -
2.88 3600 0.0648 - - -
2.96 3700 0.0921 - - -
3.0 3750 - 2.4354 0.2824 -
3.04 3800 0.04 - - -
3.12 3900 0.0417 - - -
3.2 4000 0.0414 - - -
3.2800 4100 0.0485 - - -
3.36 4200 0.0255 - - -
3.44 4300 0.0688 - - -
3.52 4400 0.0574 - - -
3.6 4500 0.0766 - - -
3.68 4600 0.0481 - - -
3.76 4700 0.06 - - -
3.84 4800 0.0528 - - -
3.92 4900 0.0426 - - -
4.0 5000 0.092 2.5427 0.3284 -
4.08 5100 0.0349 - - -
4.16 5200 0.0107 - - -
4.24 5300 0.0608 - - -
4.32 5400 0.0473 - - -
4.4 5500 0.0452 - - -
4.48 5600 0.0316 - - -
4.5600 5700 0.0096 - - -
4.64 5800 0.0511 - - -
4.72 5900 0.0207 - - -
4.8 6000 0.0061 - - -
4.88 6100 0.0381 - - -
4.96 6200 0.0378 - - -
5.0 6250 - 2.6061 0.3061 -
5.04 6300 0.0326 - - -
5.12 6400 0.0349 - - -
5.2 6500 0.0128 - - -
5.28 6600 0.0185 - - -
5.36 6700 0.0145 - - -
5.44 6800 0.0521 - - -
5.52 6900 0.0427 - - -
5.6 7000 0.0215 - - -
5.68 7100 0.0195 - - -
5.76 7200 0.0426 - - -
5.84 7300 0.057 - - -
5.92 7400 0.0106 - - -
6.0 7500 0.0284 2.8348 0.3291 -
6.08 7600 0.0286 - - -
6.16 7700 0.018 - - -
6.24 7800 0.0224 - - -
6.32 7900 0.0102 - - -
6.4 8000 0.0287 - - -
6.48 8100 0.0078 - - -
6.5600 8200 0.0237 - - -
6.64 8300 0.0148 - - -
6.72 8400 0.0271 - - -
6.8 8500 0.015 - - -
6.88 8600 0.0278 - - -
6.96 8700 0.0237 - - -
7.0 8750 - 2.8785 0.3188 -
7.04 8800 0.0203 - - -
7.12 8900 0.0089 - - -
7.2 9000 0.0121 - - -
7.28 9100 0.0185 - - -
7.36 9200 0.0127 - - -
7.44 9300 0.017 - - -
7.52 9400 0.0117 - - -
7.6 9500 0.006 - - -
7.68 9600 0.0061 - - -
7.76 9700 0.0141 - - -
7.84 9800 0.0091 - - -
7.92 9900 0.0164 - - -
8.0 10000 0.0244 2.8054 0.3040 -
8.08 10100 0.0001 - - -
8.16 10200 0.0187 - - -
8.24 10300 0.0098 - - -
8.32 10400 0.0114 - - -
8.4 10500 0.004 - - -
8.48 10600 0.0017 - - -
8.56 10700 0.0018 - - -
8.64 10800 0.009 - - -
8.72 10900 0.0047 - - -
8.8 11000 0.0014 - - -
8.88 11100 0.0049 - - -
8.96 11200 0.006 - - -
9.0 11250 - 2.9460 0.2967 -
9.04 11300 0.0057 - - -
9.12 11400 0.0051 - - -
9.2 11500 0.0067 - - -
9.28 11600 0.0009 - - -
9.36 11700 0.0046 - - -
9.44 11800 0.0138 - - -
9.52 11900 0.0067 - - -
9.6 12000 0.0043 - - -
9.68 12100 0.001 - - -
9.76 12200 0.0004 - - -
9.84 12300 0.0044 - - -
9.92 12400 0.003 - - -
10.0 12500 0.0055 2.9714 0.3030 0.0969

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.3.0+cu121
  • Accelerate: 0.31.0
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers and SoftmaxLoss

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}