|
--- |
|
license: llama2 |
|
--- |
|
|
|
To use this model, you must have [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) installed. |
|
|
|
``` |
|
pip install autoawq |
|
``` |
|
|
|
Example generation with streaming: |
|
|
|
```python |
|
from awq import AutoAWQForCausalLM |
|
from transformers import AutoTokenizer, TextStreamer |
|
|
|
quant_path = "casperhansen/vicuna-7b-v1.5-awq" |
|
quant_file = "awq_model_w4_g128.pt" |
|
|
|
# Load model |
|
model = AutoAWQForCausalLM.from_quantized(quant_path, quant_file, fuse_layers=True) |
|
tokenizer = AutoTokenizer.from_pretrained(quant_path, trust_remote_code=True) |
|
streamer = TextStreamer(tokenizer, skip_special_tokens=True) |
|
|
|
# Convert prompt to tokens |
|
prompt_template = """\ |
|
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. |
|
|
|
USER: {prompt} |
|
ASSISTANT:""" |
|
|
|
tokens = tokenizer( |
|
prompt_template.format(prompt="How are you today?"), |
|
return_tensors='pt' |
|
).input_ids.cuda() |
|
|
|
# Generate output |
|
generation_output = model.generate( |
|
tokens, |
|
streamer=streamer, |
|
max_new_tokens=512 |
|
) |
|
``` |