File size: 1,455 Bytes
1d1e5dc cf4aaa4 1d1e5dc 85a326f 1d1e5dc cf4aaa4 85a326f cf4aaa4 85a326f cf4aaa4 85a326f cf4aaa4 85a326f cf4aaa4 85a326f cf4aaa4 85a326f cf4aaa4 b9a303f cf4aaa4 85a326f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
model-index:
- name: twitter-roberta-base-hate-multiclass-latest
results: []
language:
- en
pipeline_tag: text-classification
---
# cardiffnlp/twitter-roberta-base-hate-multiclass-latest
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-2022-154m](https://huggingface.co./cardiffnlp/twitter-roberta-base-2022-154m) for multiclass hate-speech classification. A combination of 13 different hate-speech datasets in the English language were used to fine-tune the model.
## Classes available
```
{
"sexism": 0,
"racism": 1,
"disability": 2,
"sexual_orientation": 3,
"religion": 4,
"other": 5,
"not_hate":6
}
```
## Following metrics are achieved
* Accuracy: 0.9419
* Macro-F1: 0.5752
* Weighted-F1: 0.9390
### Usage
Install tweetnlp via pip.
```shell
pip install tweetnlp
```
Load the model in python.
```python
import tweetnlp
model = tweetnlp.Classifier("cardiffnlp/twitter-roberta-base-hate-latest")
model.predict('Women are trash 2.')
>> {'label': 'sexism'}
model.predict('@user dear mongoloid respect sentiments & belief refrain totalitarianism. @user')
>> {'label': 'disability'}
```
### Model based on:
```
@misc{antypas2023robust,
title={Robust Hate Speech Detection in Social Media: A Cross-Dataset Empirical Evaluation},
author={Dimosthenis Antypas and Jose Camacho-Collados},
year={2023},
eprint={2307.01680},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |