antypasd commited on
Commit
85a326f
·
1 Parent(s): cf4aaa4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -31
README.md CHANGED
@@ -1,47 +1,53 @@
1
  ---
2
- tags:
3
- - generated_from_keras_callback
4
  model-index:
5
  - name: twitter-roberta-base-hate-multiclass-latest
6
  results: []
 
 
 
7
  ---
8
 
9
- <!-- This model card has been generated automatically according to the information Keras had access to. You should
10
- probably proofread and complete it, then remove this comment. -->
11
 
12
- # twitter-roberta-base-hate-multiclass-latest
13
 
14
- This model was trained from scratch on an unknown dataset.
15
- It achieves the following results on the evaluation set:
16
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
- ## Model description
 
 
 
19
 
20
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
- ## Intended uses & limitations
23
 
24
- More information needed
25
 
26
- ## Training and evaluation data
27
 
28
- More information needed
29
 
30
- ## Training procedure
31
-
32
- ### Training hyperparameters
33
-
34
- The following hyperparameters were used during training:
35
- - optimizer: None
36
- - training_precision: float32
37
-
38
- ### Training results
39
-
40
-
41
-
42
- ### Framework versions
43
-
44
- - Transformers 4.30.2
45
- - TensorFlow 2.12.0
46
- - Datasets 2.10.1
47
- - Tokenizers 0.12.1
 
1
  ---
 
 
2
  model-index:
3
  - name: twitter-roberta-base-hate-multiclass-latest
4
  results: []
5
+ language:
6
+ - en
7
+ pipeline_tag: text-classification
8
  ---
9
 
 
 
10
 
11
+ # cardiffnlp/twitter-roberta-base-hate-multiclass-latest
12
 
13
+ This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-2022-154m](https://huggingface.co/cardiffnlp/twitter-roberta-base-2022-154m) for multiclass hate-speech classification. A combination of 13 different hate-speech datasets in the English language were used to fine-tune the model.
 
14
 
15
+ ## Classes available
16
+ ```
17
+ {
18
+ "sexism": 0,
19
+ "racism": 1,
20
+ "disability": 2,
21
+ "sexual_orientation": 3,
22
+ "religion": 4,
23
+ "other": 5,
24
+ "not_hate":6
25
+ }
26
+ ```
27
 
28
+ ## Following metrics are achieved
29
+ * Accuracy: 0.9419
30
+ * Macro-F1: 0.5752
31
+ * Weighted-F1: 0.9390
32
 
33
+ ### Usage
34
+ Install tweetnlp via pip.
35
+ ```shell
36
+ pip install tweetnlp
37
+ ```
38
+ Load the model in python.
39
+ ```python
40
+ import tweetnlp
41
+ model = tweetnlp.Classifier("cardiffnlp/twitter-roberta-base-hate-latest")
42
+ model.predict('Women are trash 2.')
43
+ >> {'label': 'sexism'}
44
+ model.predict('@user dear mongoloid respect sentiments & belief refrain totalitarianism. @user')
45
+ >> {'label': 'disability'}
46
 
47
+ ```
48
 
 
49
 
50
+ ```
51
 
 
52
 
53
+ ```