whisper-small-id / README.md
cahya's picture
finetuned with more dataset
fe26a48
metadata
language:
  - id
license: cc
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
  - magic_data,
  - titml
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper Small Indonesian
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0 id
          type: mozilla-foundation/common_voice_11_0
          config: id
          split: test
        metrics:
          - name: Wer
            type: wer
            value: 6.059208706077654

Whisper Small Indonesian

This model is a fine-tuned version of openai/whisper-small on the mozilla-foundation/common_voice_11_0, magic_data, titml, google/fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1022
  • Wer: 6.0592

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.173 0.66 1000 0.1654 9.8773
0.0771 1.32 2000 0.1290 7.7515
0.0569 1.99 3000 0.1056 7.1475
0.0274 2.65 4000 0.1044 6.6264
0.0072 3.31 5000 0.1023 6.3543
0.009 3.97 6000 0.1000 6.3359
0.0033 4.63 7000 0.1022 6.0592
0.002 5.29 8000 0.1051 6.1560
0.0028 5.96 9000 0.1052 6.1007
0.0013 6.62 10000 0.1063 6.1376

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 2.7.0
  • Tokenizers 0.13.1