File size: 4,795 Bytes
856c37a
 
 
 
 
 
 
 
 
 
 
 
 
3366f88
856c37a
 
 
 
 
 
 
 
 
 
 
 
 
 
3366f88
856c37a
 
 
 
 
 
 
 
 
 
 
 
2da000e
856c37a
 
 
 
 
 
ff273e5
856c37a
 
 
 
ff273e5
 
 
 
856c37a
ff273e5
856c37a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05cafe0
 
 
 
 
 
856c37a
 
 
3366f88
856c37a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff273e5
856c37a
 
 
 
ff273e5
 
 
 
856c37a
ff273e5
856c37a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
---
language: br
datasets:
- common_voice 
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: XLSR Wav2Vec2 Breton by Cahya
  results:
  - task: 
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice br
      type: common_voice
      args: br
    metrics:
       - name: Test WER
         type: wer
         value: 41.71
---

# Wav2Vec2-Large-XLSR-Breton

Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co./facebook/wav2vec2-large-xlsr-53)
on the [Breton Common Voice dataset](https://huggingface.co./datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.

## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

test_dataset = load_dataset("common_voice", "br", split="test[:2%]")

processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-breton")
model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-breton")

chars_to_ignore_regex = '[\\,\,\?\.\!\;\:\"\“\%\”\�\(\)\/\«\»\½\…]'

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
    batch["sentence"] = batch["sentence"].replace("ʼ", "'")
    batch["sentence"] = batch["sentence"].replace("’", "'")
    batch["sentence"] = batch["sentence"].replace('‘', "'")
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset[:2]["sentence"])
```

The above code leads to the following prediction for the first two samples:
```
Prediction: ["ne' ler ket don a-benn us netra pa vez zer nic'hed evel-si", 'an eil hag egile']
Reference: ['"n\'haller ket dont a-benn eus netra pa vezer nec\'het evel-se." ', 'an eil hag egile. ']
```


## Evaluation

The model can be evaluated as follows on the Breton test data of Common Voice.

```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

test_dataset = load_dataset("common_voice", "br", split="test")
wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-breton")
model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-breton") 
model.to("cuda")

chars_to_ignore_regex = '[\\,\,\?\.\!\;\:\"\“\%\”\�\(\)\/\«\»\½\…]'

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
    batch["sentence"] = batch["sentence"].replace("ʼ", "'")
    batch["sentence"] = batch["sentence"].replace("’", "'")
    batch["sentence"] = batch["sentence"].replace('‘', "'")
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    with torch.no_grad():
        logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```

**Test Result**: 41.71 %

## Training

The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ...  # TODO

The script used for training can be found [here](https://github.com/cahya-wirawan/indonesian-speech-recognition) 
(will be available soon)