Edit model card

Wav2Vec2-Large-XLSR-Breton

Fine-tuned facebook/wav2vec2-large-xlsr-53 on the Breton Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

test_dataset = load_dataset("common_voice", "br", split="test[:2%]")

processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-breton")
model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-breton")

chars_to_ignore_regex = '[\\,\,\?\.\!\;\:\"\“\%\”\�\(\)\/\«\»\½\…]'

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
    batch["sentence"] = batch["sentence"].replace("ʼ", "'")
    batch["sentence"] = batch["sentence"].replace("’", "'")
    batch["sentence"] = batch["sentence"].replace('‘', "'")
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset[:2]["sentence"])

The above code leads to the following prediction for the first two samples:

Prediction: ["ne' ler ket don a-benn us netra pa vez zer nic'hed evel-si", 'an eil hag egile']
Reference: ['"n\'haller ket dont a-benn eus netra pa vezer nec\'het evel-se." ', 'an eil hag egile. ']

Evaluation

The model can be evaluated as follows on the Breton test data of Common Voice.

import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

test_dataset = load_dataset("common_voice", "br", split="test")
wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-breton")
model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-breton") 
model.to("cuda")

chars_to_ignore_regex = '[\\,\,\?\.\!\;\:\"\“\%\”\�\(\)\/\«\»\½\…]'

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
    batch["sentence"] = batch["sentence"].replace("ʼ", "'")
    batch["sentence"] = batch["sentence"].replace("’", "'")
    batch["sentence"] = batch["sentence"].replace('‘', "'")
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    with torch.no_grad():
        logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))

Test Result: 41.71 %

Training

The Common Voice train, validation, and ... datasets were used for training as well as ... and ... # TODO

The script used for training can be found here (will be available soon)

Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train cahya/wav2vec2-large-xlsr-breton

Evaluation results