bunnycore's picture
Adding Evaluation Results (#1)
ecdf8ab verified
metadata
library_name: transformers
tags:
  - mergekit
  - merge
base_model:
  - meditsolutions/Llama-3.1-MedIT-SUN-8B
  - allenai/Llama-3.1-Tulu-3-8B
  - arcee-ai/Llama-3.1-SuperNova-Lite
model-index:
  - name: Tulu-3.1-8B-SuperNova
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 81.94
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Tulu-3.1-8B-SuperNova
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 32.5
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Tulu-3.1-8B-SuperNova
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 24.32
            name: exact match
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Tulu-3.1-8B-SuperNova
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 6.94
            name: acc_norm
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Tulu-3.1-8B-SuperNova
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 8.69
            name: acc_norm
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Tulu-3.1-8B-SuperNova
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 31.27
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Tulu-3.1-8B-SuperNova
          name: Open LLM Leaderboard

merge

This is a merge of pre-trained language models created using mergekit.

Merge Details

Merge Method

This model was merged using the linear merge method.

Models Merged

The following models were included in the merge:

Configuration

The following YAML configuration was used to produce this model:

models:
  - model: arcee-ai/Llama-3.1-SuperNova-Lite
    parameters:
      weight: 1.0
  - model: allenai/Llama-3.1-Tulu-3-8B
    parameters:
      weight: 1.0
  - model: meditsolutions/Llama-3.1-MedIT-SUN-8B
    parameters:
      weight: 1.0
merge_method: linear
normalize: false
int8_mask: true
dtype: bfloat16

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 30.94
IFEval (0-Shot) 81.94
BBH (3-Shot) 32.50
MATH Lvl 5 (4-Shot) 24.32
GPQA (0-shot) 6.94
MuSR (0-shot) 8.69
MMLU-PRO (5-shot) 31.27