metadata
license: mit
tags:
- generated_from_trainer
datasets:
- dutch_social
metrics:
- accuracy
- f1
- precision
- recall
base_model: pdelobelle/robbert-v2-dutch-base
model-index:
- name: robbert-twitter-sentiment-tokenized
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: dutch_social
type: dutch_social
args: dutch_social
metrics:
- type: accuracy
value: 0.814
name: Accuracy
- type: f1
value: 0.8132800039281481
name: F1
- type: precision
value: 0.8131073640029836
name: Precision
- type: recall
value: 0.814
name: Recall
robbert-twitter-sentiment-tokenized
This model is a fine-tuned version of pdelobelle/robbert-v2-dutch-base on the dutch_social dataset. It achieves the following results on the evaluation set:
- Loss: 0.5473
- Accuracy: 0.814
- F1: 0.8133
- Precision: 0.8131
- Recall: 0.814
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.6895 | 1.0 | 282 | 0.6307 | 0.7433 | 0.7442 | 0.7500 | 0.7433 |
0.4948 | 2.0 | 564 | 0.5189 | 0.8053 | 0.8062 | 0.8081 | 0.8053 |
0.2642 | 3.0 | 846 | 0.5473 | 0.814 | 0.8133 | 0.8131 | 0.814 |
Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cpu
- Datasets 2.0.0
- Tokenizers 0.11.6