librarian-bot's picture
Librarian Bot: Add base_model information to model
5a9aec5
|
raw
history blame
2.24 kB
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - dutch_social
metrics:
  - accuracy
  - f1
  - precision
  - recall
base_model: pdelobelle/robbert-v2-dutch-base
model-index:
  - name: robbert-twitter-sentiment-tokenized
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: dutch_social
          type: dutch_social
          args: dutch_social
        metrics:
          - type: accuracy
            value: 0.814
            name: Accuracy
          - type: f1
            value: 0.8132800039281481
            name: F1
          - type: precision
            value: 0.8131073640029836
            name: Precision
          - type: recall
            value: 0.814
            name: Recall

robbert-twitter-sentiment-tokenized

This model is a fine-tuned version of pdelobelle/robbert-v2-dutch-base on the dutch_social dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5473
  • Accuracy: 0.814
  • F1: 0.8133
  • Precision: 0.8131
  • Recall: 0.814

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.6895 1.0 282 0.6307 0.7433 0.7442 0.7500 0.7433
0.4948 2.0 564 0.5189 0.8053 0.8062 0.8081 0.8053
0.2642 3.0 846 0.5473 0.814 0.8133 0.8131 0.814

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.11.0+cpu
  • Datasets 2.0.0
  • Tokenizers 0.11.6