|
--- |
|
license: apache-2.0 |
|
tags: |
|
- background-removal |
|
- Pytorch |
|
- vision |
|
--- |
|
|
|
# BRIA Background Removal v1.3 |
|
|
|
## Usage |
|
|
|
```python |
|
import os |
|
import numpy as np |
|
from skimage import io |
|
from glob import glob |
|
from tqdm import tqdm |
|
import cv2 |
|
import torch.nn.functional as F |
|
from torchvision.transforms.functional import normalize |
|
from models import BriaRMBG |
|
|
|
input_size=[1024,1024] |
|
net=BriaRMBG() |
|
|
|
model_path = "./model.pth" |
|
im_path = "./example_image.jpg" |
|
result_path = "." |
|
|
|
if torch.cuda.is_available(): |
|
net.load_state_dict(torch.load(model_path)) |
|
net=net.cuda() |
|
else: |
|
net.load_state_dict(torch.load(model_path,map_location="cpu")) |
|
net.eval() |
|
|
|
# prepare input |
|
im = io.imread(im_path) |
|
if len(im.shape) < 3: |
|
im = im[:, :, np.newaxis] |
|
im_size=im.shape[0:2] |
|
im_tensor = torch.tensor(im, dtype=torch.float32).permute(2,0,1) |
|
im_tensor = F.interpolate(torch.unsqueeze(im_tensor,0), size=input_size, mode='bilinear').type(torch.uint8) |
|
image = torch.divide(im_tensor,255.0) |
|
image = normalize(image,[0.5,0.5,0.5],[1.0,1.0,1.0]) |
|
|
|
if torch.cuda.is_available(): |
|
image=image.cuda() |
|
|
|
# inference |
|
result=net(image) |
|
|
|
# post process |
|
result = torch.squeeze(F.interpolate(result[0][0], size=im_size, mode='bilinear') ,0) |
|
ma = torch.max(result) |
|
mi = torch.min(result) |
|
result = (result-mi)/(ma-mi) |
|
|
|
# save result |
|
im_name=im_path.split('/')[-1].split('.')[0] |
|
im_array = (result*255).permute(1,2,0).cpu().data.numpy().astype(np.uint8) |
|
cv2.imwrite(os.path.join(result_path, im_name+".png"), im_array) |
|
``` |
|
|
|
## Training data |
|
Bria-RMBG model was trained over 12000 high quality, high resolution images. |
|
All images were manualy labeled pixel-wise accuratly. The images belong to veriety of categories, the majority of them inclues people. |
|
|
|
## Qualitative Evaluation |