RMBG-1.4 / README.md
Negev900's picture
Update README.md
1fabafe verified
|
raw
history blame
No virus
4.51 kB
metadata
license: other
licence_name: bria-rmbg-1.4
license_link: https://bria.ai/bria-huggingface-model-license-agreement/
tags:
  - remove background
  - background
  - background removal
  - Pytorch
  - vision
  - legal liability
extra_gated_prompt: >-
  This model weights by BRIA AI can be obtained after a commercial license is
  agreed upon. Fill in the form below and we reach out to you.
extra_gated_fields:
  Name: text
  Company/Org name: text
  Org Type (Early/Growth Startup, Enterprise, Academy): text
  Role: text
  Country: text
  Email: text
  By submitting this form, I agree to BRIA’s Privacy policy and Terms & conditions, see links below: checkbox

BRIA Background Removal v1.4 Model Card

RMBG v1.4 is our state-of-the-art background removal model, designed to effectively separate foreground from background in a range of categories and image types. This model has been trained on a carefully selected dataset, which includes: general stock images, e-commerce, gaming, and advertising content, making it suitable for various use cases. Developed by BRIA AI, RMBG v1.4 is available as an open-source tool for non-commercial use.

examples

Model Description

  • Developed by: BRIA AI

  • Model type: Background Removal

  • License: bria-rmbg-1.4

    • The model is open for non-commercial use.
    • Commercial use is subject to a commercial agreement with BRIA. Contact Us
  • Model Description: BRIA RMBG 1.4 is an saliency segmentation model trained exclusively on a professional-grade dataset.

Training data

Bria-RMBG model was trained over 12,000 high-quality, high-resolution, manually labeled (pixel-wise accuracy), fully licensed images. For clarity, we provide our data distribution according to different categories, demonstrating our model’s versatility.

Distribution of images:

Category Distribution
Objects only 45.11%
People with objects/animals 25.24%
People only 17.35%
people/objects/animals with text 8.52%
Text only 2.52%
Animals only 1.89%
Category Distribution
Photorealistic 87.70%
Non-Photorealistic 12.30%
Category Distribution
Non Solid Background 52.05%
Solid Background 47.95%
Category Distribution
Single main foreground object 51.42%
Multiple objects in the foreground 48.58%

Qualitative Evaluation

examples

  • Inference Time : 1 sec on Nvidia A10 GPU

Architecture

The model’s architecture is based on IS-Net. Yet, we employ a distinct training scheme and utilize our proprietary data for the training process, enhancing the model's effectiveness.

Usage

import os
import numpy as np
from skimage import io
from glob import glob
from tqdm import tqdm
import cv2
import torch.nn.functional as F
from torchvision.transforms.functional import normalize
from models import BriaRMBG

input_size=[1024,1024]
net=BriaRMBG()

model_path = "./model.pth"
im_path = "./example_image.jpg"
result_path = "."

if torch.cuda.is_available():
    net.load_state_dict(torch.load(model_path))
    net=net.cuda()
else:
    net.load_state_dict(torch.load(model_path,map_location="cpu"))
net.eval()    

# prepare input
im = io.imread(im_path)
if len(im.shape) < 3:
    im = im[:, :, np.newaxis]
im_size=im.shape[0:2]
im_tensor = torch.tensor(im, dtype=torch.float32).permute(2,0,1)
im_tensor = F.interpolate(torch.unsqueeze(im_tensor,0), size=input_size, mode='bilinear').type(torch.uint8)
image = torch.divide(im_tensor,255.0)
image = normalize(image,[0.5,0.5,0.5],[1.0,1.0,1.0])

if torch.cuda.is_available():
    image=image.cuda()

# inference 
result=net(image)

# post process
result = torch.squeeze(F.interpolate(result[0][0], size=im_size, mode='bilinear') ,0)
ma = torch.max(result)
mi = torch.min(result)
result = (result-mi)/(ma-mi)

# save result
im_name=im_path.split('/')[-1].split('.')[0]
im_array = (result*255).permute(1,2,0).cpu().data.numpy().astype(np.uint8)
cv2.imwrite(os.path.join(result_path, im_name+".png"), im_array)