Edit model card

albert-small-kor-sbert-v1.1

This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

albert-small-kor-v1 모델을 sentencebert로 만든 모델.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('bongsoo/albert-small-kor-sbert-v1.1')
embeddings = model.encode(sentences)
print(embeddings)

Usage (HuggingFace Transformers)

Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

from transformers import AutoTokenizer, AutoModel
import torch


def cls_pooling(model_output, attention_mask):
    return model_output[0][:,0]


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('bongsoo/albert-small-kor-sbert-v1.1')
model = AutoModel.from_pretrained('bongsoo/albert-small-kor-sbert-v1.1')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, cls pooling.
sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)

Evaluation Results

  • 성능 측정을 위한 말뭉치는, 아래 한국어 (kor), 영어(en) 평가 말뭉치를 이용함
    한국어 : korsts(1,379쌍문장)klue-sts(519쌍문장)
    영어 : stsb_multi_mt(1,376쌍문장) 와 glue:stsb (1,500쌍문장)
  • 성능 지표는 cosin.spearman
  • 평가 측정 코드는 여기 참조
  • 모델 korsts klue-sts glue(stsb) stsb_multi_mt(en)
    distiluse-base-multilingual-cased-v2 0.7475 0.7855 0.8193 0.8075
    paraphrase-multilingual-mpnet-base-v2 0.8201 0.7993 0.8907 0.8682
    bongsoo/albert-small-kor-sbert-v1 0.8305 0.8588 0.8419 0.7965
    bongsoo/klue-sbert-v1.0 0.8529 0.8952 0.8813 0.8469
    bongsoo/kpf-sbert-v1.1 0.8750 0.8900 0.8863 0.8554
    bongsoo/albert-small-kor-sbert-v1.1 0.8526 0.8833 0.8484 0.8286

For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net

Training

The model was trained with the parameters:

공통

  • do_lower_case=1, correct_bios=0, polling_mode=cls

1.STS

  • 말뭉치 : korsts(5,749) + kluestsV1.1(11,668) + stsb_multi_mt(5,749) + mteb/sickr-sts(9,927) + glue stsb(5,749) (총:38,842)
  • Param : lr: 1e-4, eps: 1e-6, warm_step=10%, epochs: 10, train_batch: 32, eval_batch: 64, max_token_len: 72
  • 훈련코드 여기 참조

2.distilation

  • 교사 모델 : kpf-sbert-v1.1(max_token_len:128)
  • 말뭉치 : news_talk_ko_en_train.tsv (한국어-영어 대화-뉴스 병렬 말뭉치 : 1.38M)
  • Param : lr: 5e-5, epochs: 10, train_batch: 32, eval/test_batch: 64, max_token_len: 128(교사모델이 128이므로 맟춰줌)
  • 훈련코드 여기 참조

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': True}) with Transformer model: AlbertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)

Citing & Authors

bongsoo

Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.