bongsoo's picture
Update README.md
54d83ed
---
license: apache-2.0
language:
- ko
---
# albert-small-kor-cross-encoder-v1
- albert-small-kor-v1 ๋ชจ๋ธ์„ ํ›ˆ๋ จ์‹œ์ผœ cross-encoder๋กœ ํŒŒ์ธํŠœ๋‹ํ•œ ๋ชจ๋ธ
- This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.
# Training
- sts(10)-nli(3)-sts(10)-nli(3)-sts(10) ํ›ˆ๋ จ ์‹œํ‚ด (**distil ํ›ˆ๋ จ ์—†์Œ**)
- STS : seed=111,epoch=10, lr=1e-4, eps=1e-6, warm_step=10%, max_seq_len=128, train_batch=128(small ๋ชจ๋ธ=32) (albert 13m/7G) [ํ›ˆ๋ จ์ฝ”๋“œ](https://github.com/kobongsoo/BERT/blob/master/sbert/cross-encoder/sbert-corossencoder-train-nli.ipynb)
- NLI ํ›ˆ๋ จ : seed=111,epoch=3, lr=3e-5, eps=1e-8, warm_step=10%, max_seq_len=128, train_batch=64, eval_bath=64(albert 2h/7G) [ํ›ˆ๋ จ์ฝ”๋“œ](https://github.com/kobongsoo/BERT/blob/master/sbert/cross-encoder/sbert-corossencoder-train-sts.ipynb)
- [ํ‰๊ฐ€์ฝ”๋“œ](https://github.com/kobongsoo/BERT/blob/master/sbert/cross-encoder/sbert-crossencoder-test3.ipynb),[ํ…Œ์ŠคํŠธ์ฝ”๋“œ](https://github.com/kobongsoo/BERT/blob/master/sbert/cross-encoder/sbert-crossencoder-test.ipynb)
-
|๋ชจ๋ธ |korsts|klue-sts|glue(stsb)|stsb_multi_mt(en)|
|:--------|------:|--------:|--------------:|------------:|
|**albert-small-kor-cross-encoder-v1** |0.8455 |0.8526 |0.8513 |0.7976|
|klue-cross-encoder-v1 |0.8262 |0.8833 |0.8512 |0.7889|
|kpf-cross-encoder-v1 |0.8799 |0.9133 |0.8626 |0.8027|
## Usage and Performance
Pre-trained models can be used like this:
```
from sentence_transformers import CrossEncoder
model = CrossEncoder('bongsoo/albert-small-kor-cross-encoder-v1')
scores = model.predict([('์˜ค๋Š˜ ๋‚ ์”จ๊ฐ€ ์ข‹๋‹ค', '์˜ค๋Š˜ ๋“ฑ์‚ฐ์„ ํ•œ๋‹ค'), ('์˜ค๋Š˜ ๋‚ ์”จ๊ฐ€ ํ๋ฆฌ๋‹ค', '์˜ค๋Š˜ ๋น„๊ฐ€ ๋‚ด๋ฆฐ๋‹ค')])
print(scores)
```
```
[0.45417202 0.6294121 ]
```
The model will predict scores for the pairs `('Sentence 1', 'Sentence 2')` and `('Sentence 3', 'Sentence 4')`.
You can use this model also without sentence_transformers and by just using Transformers ``AutoModel`` class