|
--- |
|
license: apache-2.0 |
|
language: |
|
- ko |
|
--- |
|
# albert-small-kor-cross-encoder-v1 |
|
- albert-small-kor-v1 ๋ชจ๋ธ์ ํ๋ จ์์ผ cross-encoder๋ก ํ์ธํ๋ํ ๋ชจ๋ธ |
|
- This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class. |
|
|
|
# Training |
|
- sts(10)-nli(3)-sts(10)-nli(3)-sts(10) ํ๋ จ ์ํด (**distil ํ๋ จ ์์**) |
|
- STS : seed=111,epoch=10, lr=1e-4, eps=1e-6, warm_step=10%, max_seq_len=128, train_batch=128(small ๋ชจ๋ธ=32) (albert 13m/7G) [ํ๋ จ์ฝ๋](https://github.com/kobongsoo/BERT/blob/master/sbert/cross-encoder/sbert-corossencoder-train-nli.ipynb) |
|
- NLI ํ๋ จ : seed=111,epoch=3, lr=3e-5, eps=1e-8, warm_step=10%, max_seq_len=128, train_batch=64, eval_bath=64(albert 2h/7G) [ํ๋ จ์ฝ๋](https://github.com/kobongsoo/BERT/blob/master/sbert/cross-encoder/sbert-corossencoder-train-sts.ipynb) |
|
- [ํ๊ฐ์ฝ๋](https://github.com/kobongsoo/BERT/blob/master/sbert/cross-encoder/sbert-crossencoder-test3.ipynb),[ํ
์คํธ์ฝ๋](https://github.com/kobongsoo/BERT/blob/master/sbert/cross-encoder/sbert-crossencoder-test.ipynb) |
|
|
|
- |
|
|๋ชจ๋ธ |korsts|klue-sts|glue(stsb)|stsb_multi_mt(en)| |
|
|:--------|------:|--------:|--------------:|------------:| |
|
|**albert-small-kor-cross-encoder-v1** |0.8455 |0.8526 |0.8513 |0.7976| |
|
|klue-cross-encoder-v1 |0.8262 |0.8833 |0.8512 |0.7889| |
|
|kpf-cross-encoder-v1 |0.8799 |0.9133 |0.8626 |0.8027| |
|
|
|
## Usage and Performance |
|
|
|
Pre-trained models can be used like this: |
|
``` |
|
from sentence_transformers import CrossEncoder |
|
model = CrossEncoder('bongsoo/albert-small-kor-cross-encoder-v1') |
|
scores = model.predict([('์ค๋ ๋ ์จ๊ฐ ์ข๋ค', '์ค๋ ๋ฑ์ฐ์ ํ๋ค'), ('์ค๋ ๋ ์จ๊ฐ ํ๋ฆฌ๋ค', '์ค๋ ๋น๊ฐ ๋ด๋ฆฐ๋ค')]) |
|
print(scores) |
|
``` |
|
``` |
|
[0.45417202 0.6294121 ] |
|
``` |
|
|
|
The model will predict scores for the pairs `('Sentence 1', 'Sentence 2')` and `('Sentence 3', 'Sentence 4')`. |
|
|
|
You can use this model also without sentence_transformers and by just using Transformers ``AutoModel`` class |