bond005's picture
Update README.md
89cceec
|
raw
history blame
9.8 kB
metadata
language: ru
datasets:
  - SberDevices/Golos
  - common_voice
metrics:
  - wer
  - cer
tags:
  - audio
  - automatic-speech-recognition
  - speech
  - common_voice
  - SberDevices/Golos
license: apache-2.0
widget:
  - example_title: >-
      test Russian speech "нейросети это хорошо" (in English, "neural networks
      are good")
    src: >-
      https://huggingface.co./bond005/wav2vec2-large-ru-golos-with-lm/resolve/main/test_sound_ru.flac
model-index:
  - name: XLSR Wav2Vec2 Russian with Language Model by Ivan Bondarenko
    results:
      - task:
          name: Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Sberdevices Golos (crowd)
          type: SberDevices/Golos
          args: ru
        metrics:
          - name: Test WER
            type: wer
            value: 4.272
          - name: Test CER
            type: cer
            value: 0.983
      - task:
          name: Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Sberdevices Golos (farfield)
          type: SberDevices/Golos
          args: ru
        metrics:
          - name: Test WER
            type: wer
            value: 11.405
          - name: Test CER
            type: cer
            value: 3.628
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice ru
          type: common_voice
          args: ru
        metrics:
          - name: Test WER
            type: wer
            value: 19.053
          - name: Test CER
            type: cer
            value: 4.876

Wav2Vec2-Large-Ru-Golos-With-LM

The Wav2Vec2 model is based on facebook/wav2vec2-large-xlsr-53, fine-tuned in Russian using Sberdevices Golos with audio augmentations like as pitch shift, acceleration/deceleration of sound, reverberation etc.

The 2-gram language model is built on the Russian text corpus obtained from three open sources:

Usage

When using this model, make sure that your speech input is sampled at 16kHz.

You can use this model by writing your own inference script:

import os
import warnings

import librosa
import nltk
import numpy as np

import torch
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2ProcessorWithLM

MODEL_ID = "bond005/wav2vec2-large-ru-golos-with-lm"
DATASET_ID = "bond005/sberdevices_golos_10h_crowd"
SAMPLES = 20

nltk.download('punkt')
num_processes = max(1, os.cpu_count())

test_dataset = load_dataset(DATASET_ID, split=f"test[:{SAMPLES}]")
processor = Wav2Vec2ProcessorWithLM.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    speech_array = batch["audio"]["array"]
    batch["speech"] = np.asarray(speech_array, dtype=np.float32)
    return batch

removed_columns = set(test_dataset.column_names)
removed_columns -= {'transcription', 'speech'}
removed_columns = sorted(list(removed_columns))
with warnings.catch_warnings():
    warnings.simplefilter("ignore")
    test_dataset = test_dataset.map(
        speech_file_to_array_fn,
        num_proc=num_processes,
        remove_columns=removed_columns
    )

inputs = processor(test_dataset["speech"], sampling_rate=16_000,
                   return_tensors="pt", padding=True)
with torch.no_grad():
    logits = model(inputs.input_values,
                   attention_mask=inputs.attention_mask).logits
predicted_sentences = processor.batch_decode(
    logits=logits.numpy(),
    num_processes=num_processes
).text

with warnings.catch_warnings():
    warnings.simplefilter("ignore")
    for i, predicted_sentence in enumerate(predicted_sentences):
        print("-" * 100)
        print("Reference:", test_dataset[i]["transcription"])
        print("Prediction:", predicted_sentence)
----------------------------------------------------------------------------------------------------
Reference:  шестьдесят тысяч тенге сколько будет стоить
Prediction: шестьдесят тысяч тенге сколько будет стоить
----------------------------------------------------------------------------------------------------
Reference:  покажи мне на смотрешке телеканал синергия тв
Prediction: покажи мне на смотрешке телеканал синергия тв
----------------------------------------------------------------------------------------------------
Reference:  заказать яблоки зеленые
Prediction: заказать яблоки зеленые
----------------------------------------------------------------------------------------------------
Reference:  алиса закажи килограммовый торт графские развалины
Prediction: алиса закажи килограммовый торт графские развалины
----------------------------------------------------------------------------------------------------
Reference:  ищи телеканал про бизнес на тиви
Prediction: ищи телеканал про бизнес на тви
----------------------------------------------------------------------------------------------------
Reference:  михаила мурадяна
Prediction: михаила мурадяна
----------------------------------------------------------------------------------------------------
Reference:  любовницы две тысячи тринадцать пятнадцатый сезон
Prediction: любовница две тысячи тринадцать пятнадцатый сезон
----------------------------------------------------------------------------------------------------
Reference:  найди боевики
Prediction: найди боевики
----------------------------------------------------------------------------------------------------
Reference:  гетто сезон три
Prediction: гетта сезон три
----------------------------------------------------------------------------------------------------
Reference:  хочу посмотреть ростов папа на телевизоре
Prediction: хочу посмотреть ростов папа на телевизоре
----------------------------------------------------------------------------------------------------
Reference:  сбер какое твое самое ненавистное занятие
Prediction: сбер какое твое самое ненавистное занятие
----------------------------------------------------------------------------------------------------
Reference:  афина чем платят у китайцев
Prediction: афина чем платят у китайцев
----------------------------------------------------------------------------------------------------
Reference:  джой как работает досрочное погашение кредита
Prediction: джой как работает досрочное погашение кредита
----------------------------------------------------------------------------------------------------
Reference:  у тебя найдется люк кейдж
Prediction: у тебя найдется люк кейдж
----------------------------------------------------------------------------------------------------
Reference:  у тебя будет лучшая часть пинк
Prediction: у тебя будет лучшая часть пинк
----------------------------------------------------------------------------------------------------
Reference:  пожалуйста пополните мне счет
Prediction: пожалуйста пополните мне счет
----------------------------------------------------------------------------------------------------
Reference:  анне павловне шабуровой
Prediction: анне павловне шабуровой
----------------------------------------------------------------------------------------------------
Reference:  врубай на смотрешке муз тв
Prediction: врубай на смотрешке муз тиви
----------------------------------------------------------------------------------------------------
Reference:  найди на смотрешке лдпр тв
Prediction: найди на смотрешке лдпр тв
----------------------------------------------------------------------------------------------------
Reference:  сбер мне нужен педикюр забей мне место
Prediction: сбер мне нужен педикюр забелье место

The Google Colab version of this script is available too.

Evaluation

This model was evaluated on the test subsets of SberDevices Golos and Common Voice 6.0 (Russian part), but it was trained on the training subset of SberDevices Golos only.

Citation

If you want to cite this model you can use this:

@misc{bondarenko2022wav2vec2-large-ru-golos,
  title={XLSR Wav2Vec2 Russian with 2-gram Language Model by Ivan Bondarenko},
  author={Bondarenko, Ivan},
  publisher={Hugging Face},
  journal={Hugging Face Hub},
  howpublished={\url{https://huggingface.co./bond005/wav2vec2-large-ru-golos-with-lm}},
  year={2022}
}