|
--- |
|
license: apache-2.0 |
|
language: de |
|
library_name: transformers |
|
thumbnail: null |
|
tags: |
|
- automatic-speech-recognition |
|
- whisper-event |
|
datasets: |
|
- mozilla-foundation/common_voice_11_0 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Fine-tuned whisper-large-v2 model for ASR in German |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 11.0 |
|
type: mozilla-foundation/common_voice_11_0 |
|
config: de |
|
split: test |
|
args: de |
|
metrics: |
|
- name: WER (Greedy) |
|
type: wer |
|
value: 5.76 |
|
--- |
|
|
|
<style> |
|
img { |
|
display: inline; |
|
} |
|
</style> |
|
|
|
![Model architecture](https://img.shields.io/badge/Model_Architecture-seq2seq-lightgrey) |
|
![Model size](https://img.shields.io/badge/Params-1550M-lightgrey) |
|
![Language](https://img.shields.io/badge/Language-German-lightgrey) |
|
|
|
# Fine-tuned whisper-large-v2 model for ASR in German |
|
|
|
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co./openai/whisper-large-v2), trained on the mozilla-foundation/common_voice_11_0 de dataset. When using the model make sure that your speech input is also sampled at 16Khz. **This model also predicts casing and punctuation.** |
|
|
|
## Performance |
|
|
|
*Below are the WERs of the pre-trained models on the [Common Voice 9.0](https://huggingface.co./datasets/mozilla-foundation/common_voice_9_0). These results are reported in the original [paper](https://cdn.openai.com/papers/whisper.pdf).* |
|
|
|
| Model | Common Voice 9.0 | |
|
| --- | :---: | |
|
| [openai/whisper-small](https://huggingface.co./openai/whisper-small) | 13.0 | |
|
| [openai/whisper-medium](https://huggingface.co./openai/whisper-medium) | 8.5 | |
|
| [openai/whisper-large-v2](https://huggingface.co./openai/whisper-large-v2) | 6.4 | |
|
|
|
*Below are the WERs of the fine-tuned models on the [Common Voice 11.0](https://huggingface.co./datasets/mozilla-foundation/common_voice_11_0).* |
|
|
|
| Model | Common Voice 11.0 | |
|
| --- | :---: | |
|
| [bofenghuang/whisper-small-cv11-german](https://huggingface.co./bofenghuang/whisper-small-cv11-german) | 11.35 | |
|
| [bofenghuang/whisper-medium-cv11-german](https://huggingface.co./bofenghuang/whisper-medium-cv11-german) | 7.05 | |
|
| [bofenghuang/whisper-large-v2-cv11-german](https://huggingface.co./bofenghuang/whisper-large-v2-cv11-german) | **5.76** | |
|
|
|
## Usage |
|
|
|
Inference with 🤗 Pipeline |
|
|
|
```python |
|
import torch |
|
|
|
from datasets import load_dataset |
|
from transformers import pipeline |
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
# Load pipeline |
|
pipe = pipeline("automatic-speech-recognition", model="bofenghuang/whisper-large-v2-cv11-german", device=device) |
|
|
|
# NB: set forced_decoder_ids for generation utils |
|
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language="de", task="transcribe") |
|
|
|
# Load data |
|
ds_mcv_test = load_dataset("mozilla-foundation/common_voice_11_0", "de", split="test", streaming=True) |
|
test_segment = next(iter(ds_mcv_test)) |
|
waveform = test_segment["audio"] |
|
|
|
# NB: decoding option |
|
# limit the maximum number of generated tokens to 225 |
|
pipe.model.config.max_length = 225 + 1 |
|
# sampling |
|
# pipe.model.config.do_sample = True |
|
# beam search |
|
# pipe.model.config.num_beams = 5 |
|
# return |
|
# pipe.model.config.return_dict_in_generate = True |
|
# pipe.model.config.output_scores = True |
|
# pipe.model.config.num_return_sequences = 5 |
|
|
|
# Run |
|
generated_sentences = pipe(waveform)["text"] |
|
``` |
|
|
|
Inference with 🤗 low-level APIs |
|
|
|
```python |
|
import torch |
|
import torchaudio |
|
|
|
from datasets import load_dataset |
|
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq |
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
# Load model |
|
model = AutoModelForSpeechSeq2Seq.from_pretrained("bofenghuang/whisper-large-v2-cv11-german").to(device) |
|
processor = AutoProcessor.from_pretrained("bofenghuang/whisper-large-v2-cv11-german", language="german", task="transcribe") |
|
|
|
# NB: set forced_decoder_ids for generation utils |
|
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="de", task="transcribe") |
|
|
|
# 16_000 |
|
model_sample_rate = processor.feature_extractor.sampling_rate |
|
|
|
# Load data |
|
ds_mcv_test = load_dataset("mozilla-foundation/common_voice_11_0", "de", split="test", streaming=True) |
|
test_segment = next(iter(ds_mcv_test)) |
|
waveform = torch.from_numpy(test_segment["audio"]["array"]) |
|
sample_rate = test_segment["audio"]["sampling_rate"] |
|
|
|
# Resample |
|
if sample_rate != model_sample_rate: |
|
resampler = torchaudio.transforms.Resample(sample_rate, model_sample_rate) |
|
waveform = resampler(waveform) |
|
|
|
# Get feat |
|
inputs = processor(waveform, sampling_rate=model_sample_rate, return_tensors="pt") |
|
input_features = inputs.input_features |
|
input_features = input_features.to(device) |
|
|
|
# Generate |
|
generated_ids = model.generate(inputs=input_features, max_new_tokens=225) # greedy |
|
# generated_ids = model.generate(inputs=input_features, max_new_tokens=225, num_beams=5) # beam search |
|
|
|
# Detokenize |
|
generated_sentences = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
# Normalise predicted sentences if necessary |
|
``` |