Fine-tuned Wav2Vec2 XLS-R 1B model for ASR in French

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the MOZILLA-FOUNDATION/COMMON_VOICE_9_0 - FR dataset.

Usage

  1. To use on a local audio file without the language model
import torch
import torchaudio

from transformers import AutoModelForCTC, Wav2Vec2Processor

processor = Wav2Vec2Processor.from_pretrained("bhuang/wav2vec2-xls-r-1b-cv9-fr")
model = AutoModelForCTC.from_pretrained("bhuang/wav2vec2-xls-r-1b-cv9-fr").cuda()

# path to your audio file
wav_path = "example.wav"
waveform, sample_rate = torchaudio.load(wav_path)
waveform = waveform.squeeze(axis=0)  # mono

# resample
if sample_rate != 16_000:
    resampler = torchaudio.transforms.Resample(sample_rate, 16_000)
    waveform = resampler(waveform)

# normalize
input_dict = processor(waveform, sampling_rate=16_000, return_tensors="pt")

with torch.inference_mode():
    logits = model(input_dict.input_values.to("cuda")).logits

# decode
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentence = processor.batch_decode(predicted_ids)[0]
  1. To use on a local audio file with the language model
import torch
import torchaudio

from transformers import AutoModelForCTC, Wav2Vec2ProcessorWithLM

processor_with_lm = Wav2Vec2ProcessorWithLM.from_pretrained("bhuang/wav2vec2-xls-r-1b-cv9-fr")
model = AutoModelForCTC.from_pretrained("bhuang/wav2vec2-xls-r-1b-cv9-fr").cuda()

model_sampling_rate = processor_with_lm.feature_extractor.sampling_rate

# path to your audio file
wav_path = "example.wav"
waveform, sample_rate = torchaudio.load(wav_path)
waveform = waveform.squeeze(axis=0)  # mono

# resample
if sample_rate != 16_000:
    resampler = torchaudio.transforms.Resample(sample_rate, 16_000)
    waveform = resampler(waveform)

# normalize
input_dict = processor_with_lm(waveform, sampling_rate=16_000, return_tensors="pt")

with torch.inference_mode():
    logits = model(input_dict.input_values.to("cuda")).logits

predicted_sentence = processor_with_lm.batch_decode(logits.cpu().numpy()).text[0]

Evaluation

  1. To evaluate on mozilla-foundation/common_voice_9_0
python eval.py \
  --model_id "bhuang/wav2vec2-xls-r-1b-cv9-fr" \
  --dataset "mozilla-foundation/common_voice_9_0" \
  --config "fr" \
  --split "test" \
  --log_outputs \
  --outdir "outputs/results_mozilla-foundatio_common_voice_9_0_with_lm"
  1. To evaluate on speech-recognition-community-v2/dev_data
python eval.py \
  --model_id "bhuang/wav2vec2-xls-r-1b-cv9-fr" \
  --dataset "speech-recognition-community-v2/dev_data" \
  --config "fr" \
  --split "validation" \
  --chunk_length_s 5.0 \
  --stride_length_s 1.0 \
  --log_outputs \
  --outdir "outputs/results_speech-recognition-community-v2_dev_data_with_lm"
Downloads last month
12
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train bofenghuang/wav2vec2-xls-r-1b-cv9-fr

Evaluation results