SentenceTransformer based on intfloat/e5-base-unsupervised
This is a sentence-transformers model finetuned from intfloat/e5-base-unsupervised. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/e5-base-unsupervised
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bobox/E5-base-unsupervised-TSDAE")
# Run inference
sentences = [
"should eat diarrhea should solid as soon able you're bottle your have, try to them as . at home until 48 last spreading others.",
"how long should you wait to eat after having diarrhea? You should eat solid food as soon as you feel able to. If you're breastfeeding or bottle feeding your baby and they have diarrhoea, you should try to feed them as normal. Stay at home until at least 48 hours after the last episode of diarrhoea to prevent spreading any infection to others.",
'how to copy multiple cells in excel and paste?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.7707 |
spearman_cosine | 0.7584 |
pearson_manhattan | 0.759 |
spearman_manhattan | 0.7475 |
pearson_euclidean | 0.7605 |
spearman_euclidean | 0.7489 |
pearson_dot | 0.5774 |
spearman_dot | 0.56 |
pearson_max | 0.7707 |
spearman_max | 0.7584 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 300,000 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 3 tokens
- mean: 20.46 tokens
- max: 69 tokens
- min: 8 tokens
- mean: 47.85 tokens
- max: 132 tokens
- Samples:
sentence_0 sentence_1 matter An unit of retains all subatomic neutrons Hydrogen (one one neutrons
are particles of matter atoms? An atom is the smallest unit of matter that retains all of the chemical properties of an element. ... Most atoms contain all three of these types of subatomic particles—protons, electrons, and neutrons. Hydrogen (H) is an exception because it typically has one proton and one electron, but no neutrons.
equals how
5 ml equals how many ounces?
"A Country Boy School is poor is forced to its boy to school following official, ignoring mean a jail
"A Country Boy Quits School" by Lao Hsiang is an endearing social satire. It is about a poor Chinese family which is forced to send its boy to school following an official proclamation, ignoring which would mean a jail term.
- Loss:
DenoisingAutoEncoderLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 14per_device_eval_batch_size
: 14num_train_epochs
: 1multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 14per_device_eval_batch_size
: 14per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | sts-test_spearman_cosine |
---|---|---|---|
0 | 0 | - | 0.7211 |
0.0233 | 500 | 6.3144 | - |
0.0467 | 1000 | 5.3949 | - |
0.0500 | 1072 | - | 0.6820 |
0.0700 | 1500 | 5.0531 | - |
0.0933 | 2000 | 4.8547 | - |
0.1001 | 2144 | - | 0.7126 |
0.1167 | 2500 | 4.7058 | - |
0.1400 | 3000 | 4.5771 | - |
0.1501 | 3216 | - | 0.7290 |
0.1633 | 3500 | 4.4591 | - |
0.1867 | 4000 | 4.3502 | - |
0.2001 | 4288 | - | 0.7351 |
0.2100 | 4500 | 4.3071 | - |
0.2333 | 5000 | 4.2042 | - |
0.2501 | 5360 | - | 0.7464 |
0.2567 | 5500 | 4.1657 | - |
0.2800 | 6000 | 4.1111 | - |
0.3002 | 6432 | - | 0.7492 |
0.3033 | 6500 | 4.045 | - |
0.3267 | 7000 | 4.017 | - |
0.3500 | 7500 | 3.9651 | - |
0.3502 | 7504 | - | 0.7554 |
0.3733 | 8000 | 3.9199 | - |
0.3967 | 8500 | 3.8691 | - |
0.4002 | 8576 | - | 0.7517 |
0.4200 | 9000 | 3.8563 | - |
0.4433 | 9500 | 3.815 | - |
0.4502 | 9648 | - | 0.7540 |
0.4667 | 10000 | 3.7892 | - |
0.4900 | 10500 | 3.7543 | - |
0.5003 | 10720 | - | 0.7585 |
0.5133 | 11000 | 3.7391 | - |
0.5367 | 11500 | 3.7442 | - |
0.5503 | 11792 | - | 0.7587 |
0.5600 | 12000 | 3.7187 | - |
0.5833 | 12500 | 3.6855 | - |
0.6003 | 12864 | - | 0.7572 |
0.6067 | 13000 | 3.6751 | - |
0.6300 | 13500 | 3.6373 | - |
0.6503 | 13936 | - | 0.7574 |
0.6533 | 14000 | 3.6292 | - |
0.6767 | 14500 | 3.6277 | - |
0.7000 | 15000 | 3.6084 | - |
0.7004 | 15008 | - | 0.7575 |
0.7233 | 15500 | 3.6103 | - |
0.7467 | 16000 | 3.5953 | - |
0.7504 | 16080 | - | 0.7576 |
0.7700 | 16500 | 3.6232 | - |
0.7933 | 17000 | 3.5741 | - |
0.8004 | 17152 | - | 0.7583 |
0.8167 | 17500 | 3.5639 | - |
0.8400 | 18000 | 3.5667 | - |
0.8504 | 18224 | - | 0.7589 |
0.8633 | 18500 | 3.5598 | - |
0.8866 | 19000 | 3.5636 | - |
0.9005 | 19296 | - | 0.7584 |
0.9100 | 19500 | 3.5536 | - |
0.9333 | 20000 | 3.5529 | - |
0.9505 | 20368 | - | 0.7584 |
0.9566 | 20500 | 3.5485 | - |
0.9800 | 21000 | 3.5503 | - |
1.0 | 21429 | - | 0.7584 |
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
DenoisingAutoEncoderLoss
@inproceedings{wang-2021-TSDAE,
title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
pages = "671--688",
url = "https://arxiv.org/abs/2104.06979",
}
- Downloads last month
- 30
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for bobox/E5-base-unsupervised-TSDAE
Base model
intfloat/e5-base-unsupervisedEvaluation results
- Pearson Cosine on sts testself-reported0.771
- Spearman Cosine on sts testself-reported0.758
- Pearson Manhattan on sts testself-reported0.759
- Spearman Manhattan on sts testself-reported0.748
- Pearson Euclidean on sts testself-reported0.760
- Spearman Euclidean on sts testself-reported0.749
- Pearson Dot on sts testself-reported0.577
- Spearman Dot on sts testself-reported0.560
- Pearson Max on sts testself-reported0.771
- Spearman Max on sts testself-reported0.758