SentenceTransformer based on microsoft/deberta-v3-small
This is a sentence-transformers model finetuned from microsoft/deberta-v3-small on the stanfordnlp/snli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/deberta-v3-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("bobox/DeBERTaV3-small-SentenceTransformer-AdaptiveLayerBaseline")
sentences = [
'people are standing near water with a boat heading their direction',
'People are standing near water with a large blue boat heading their direction.',
'The dogs are near the toy.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.766 |
spearman_cosine |
0.7681 |
pearson_manhattan |
0.7918 |
spearman_manhattan |
0.7947 |
pearson_euclidean |
0.7861 |
spearman_euclidean |
0.7896 |
pearson_dot |
0.6448 |
spearman_dot |
0.6428 |
pearson_max |
0.7918 |
spearman_max |
0.7947 |
Binary Classification
Metric |
Value |
cosine_accuracy |
0.6731 |
cosine_accuracy_threshold |
0.5815 |
cosine_f1 |
0.717 |
cosine_f1_threshold |
0.4671 |
cosine_precision |
0.5977 |
cosine_recall |
0.8959 |
cosine_ap |
0.7193 |
dot_accuracy |
0.6445 |
dot_accuracy_threshold |
71.9551 |
dot_f1 |
0.7094 |
dot_f1_threshold |
53.7729 |
dot_precision |
0.5779 |
dot_recall |
0.9184 |
dot_ap |
0.6828 |
manhattan_accuracy |
0.6665 |
manhattan_accuracy_threshold |
213.6252 |
manhattan_f1 |
0.7047 |
manhattan_f1_threshold |
245.2058 |
manhattan_precision |
0.5908 |
manhattan_recall |
0.8729 |
manhattan_ap |
0.7132 |
euclidean_accuracy |
0.6621 |
euclidean_accuracy_threshold |
10.3589 |
euclidean_f1 |
0.7024 |
euclidean_f1_threshold |
12.0109 |
euclidean_precision |
0.5865 |
euclidean_recall |
0.8754 |
euclidean_ap |
0.7102 |
max_accuracy |
0.6731 |
max_accuracy_threshold |
213.6252 |
max_f1 |
0.717 |
max_f1_threshold |
245.2058 |
max_precision |
0.5977 |
max_recall |
0.9184 |
max_ap |
0.7193 |
Training Details
Training Dataset
stanfordnlp/snli
- Dataset: stanfordnlp/snli at cdb5c3d
- Size: 314,315 training samples
- Columns:
sentence1
, sentence2
, and label
- Approximate statistics based on the first 1000 samples:
|
sentence1 |
sentence2 |
label |
type |
string |
string |
int |
details |
- min: 5 tokens
- mean: 16.62 tokens
- max: 62 tokens
|
- min: 4 tokens
- mean: 9.46 tokens
- max: 29 tokens
|
|
- Samples:
sentence1 |
sentence2 |
label |
A person on a horse jumps over a broken down airplane. |
A person is outdoors, on a horse. |
0 |
Children smiling and waving at camera |
There are children present |
0 |
A boy is jumping on skateboard in the middle of a red bridge. |
The boy does a skateboarding trick. |
0 |
- Loss:
AdaptiveLayerLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1,
"prior_layers_weight": 1,
"kl_div_weight": 1.2,
"kl_temperature": 1.2
}
Evaluation Dataset
sentence-transformers/stsb
- Dataset: sentence-transformers/stsb at ab7a5ac
- Size: 1,500 evaluation samples
- Columns:
sentence1
, sentence2
, and score
- Approximate statistics based on the first 1000 samples:
|
sentence1 |
sentence2 |
score |
type |
string |
string |
float |
details |
- min: 5 tokens
- mean: 14.77 tokens
- max: 45 tokens
|
- min: 6 tokens
- mean: 14.74 tokens
- max: 49 tokens
|
- min: 0.0
- mean: 0.47
- max: 1.0
|
- Samples:
sentence1 |
sentence2 |
score |
A man with a hard hat is dancing. |
A man wearing a hard hat is dancing. |
1.0 |
A young child is riding a horse. |
A child is riding a horse. |
0.95 |
A man is feeding a mouse to a snake. |
The man is feeding a mouse to the snake. |
1.0 |
- Loss:
AdaptiveLayerLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1,
"prior_layers_weight": 1,
"kl_div_weight": 1.2,
"kl_temperature": 1.2
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: steps
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
learning_rate
: 5e-06
weight_decay
: 1e-07
num_train_epochs
: 2
warmup_ratio
: 0.5
save_safetensors
: False
fp16
: True
push_to_hub
: True
hub_model_id
: bobox/DeBERTaV3-small-SentenceTransformer-AdaptiveLayerBaselinen
hub_strategy
: checkpoint
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: steps
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
learning_rate
: 5e-06
weight_decay
: 1e-07
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 2
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.5
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: False
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: True
resume_from_checkpoint
: None
hub_model_id
: bobox/DeBERTaV3-small-SentenceTransformer-AdaptiveLayerBaselinen
hub_strategy
: checkpoint
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
loss |
max_ap |
spearman_cosine |
None |
0 |
- |
4.1425 |
- |
0.4276 |
0.1001 |
983 |
4.7699 |
3.8387 |
0.6364 |
- |
0.2001 |
1966 |
3.5997 |
2.7649 |
0.6722 |
- |
0.3002 |
2949 |
2.811 |
2.3520 |
0.6838 |
- |
0.4003 |
3932 |
2.414 |
2.0700 |
0.6883 |
- |
0.5004 |
4915 |
2.186 |
1.8993 |
0.6913 |
- |
0.6004 |
5898 |
1.8523 |
1.5632 |
0.7045 |
- |
0.7005 |
6881 |
0.6415 |
1.4902 |
0.7082 |
- |
0.8006 |
7864 |
0.5016 |
1.4636 |
0.7108 |
- |
0.9006 |
8847 |
0.4194 |
1.3875 |
0.7121 |
- |
1.0007 |
9830 |
0.3737 |
1.3077 |
0.7117 |
- |
1.1008 |
10813 |
1.8087 |
1.0903 |
0.7172 |
- |
1.2009 |
11796 |
1.6631 |
1.0388 |
0.7180 |
- |
1.3009 |
12779 |
1.6161 |
1.0177 |
0.7169 |
- |
1.4010 |
13762 |
1.5378 |
1.0136 |
0.7148 |
- |
1.5011 |
14745 |
1.5215 |
1.0053 |
0.7159 |
- |
1.6011 |
15728 |
1.2887 |
0.9600 |
0.7166 |
- |
1.7012 |
16711 |
0.3058 |
0.9949 |
0.7180 |
- |
1.8013 |
17694 |
0.2897 |
0.9792 |
0.7186 |
- |
1.9014 |
18677 |
0.275 |
0.9598 |
0.7192 |
- |
2.0 |
19646 |
- |
0.9796 |
0.7193 |
- |
None |
0 |
- |
2.4594 |
0.7193 |
0.7681 |
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
AdaptiveLayerLoss
@misc{li20242d,
title={2D Matryoshka Sentence Embeddings},
author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
year={2024},
eprint={2402.14776},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}