bniladridas's picture
Upload README.md with huggingface_hub
92504cc verified
metadata
language: en
license: mit
tags:
  - conversational-ai
  - question-answering
  - nlp
  - transformers
  - context-aware
datasets:
  - squad
metrics:
  - exact_match
  - f1_score
model-index:
  - name: Conversational AI Base Model
    results:
      - task:
          type: question-answering
        dataset:
          name: squad
          type: question-answering
        metrics:
          - type: exact_match
            value: 0.75
          - type: f1_score
            value: 0.85

Conversational AI Base Model

Hugging Face

馃 Model Overview

A sophisticated, context-aware conversational AI model built on the DistilBERT architecture, designed for advanced natural language understanding and generation.

馃専 Key Features

  • Advanced Response Generation

    • Multi-strategy response mechanisms
    • Context-aware conversation tracking
    • Intelligent fallback responses
  • Flexible Architecture

    • Built on DistilBERT base model
    • Supports TensorFlow and PyTorch
    • Lightweight and efficient
  • Robust Processing

    • 512-token context window
    • Dynamic model loading
    • Error handling and recovery

馃殌 Quick Start

Installation

pip install transformers torch

Usage Example

from transformers import AutoModelForQuestionAnswering, AutoTokenizer

# Load model and tokenizer
model = AutoModelForQuestionAnswering.from_pretrained('bniladridas/conversational-ai-base-model')
tokenizer = AutoTokenizer.from_pretrained('bniladridas/conversational-ai-base-model')

馃 Model Capabilities

  • Semantic understanding of context and questions
  • Ability to extract precise answers
  • Multiple response generation strategies
  • Fallback mechanisms for complex queries

馃搳 Performance

  • Trained on Stanford Question Answering Dataset (SQuAD)
  • Exact Match: 75%
  • F1 Score: 85%

鈿狅笍 Limitations

  • Primarily trained on English text
  • Requires domain-specific fine-tuning
  • Performance varies by use case

馃攳 Technical Details

  • Base Model: DistilBERT
  • Variant: Distilled for question-answering
  • Maximum Sequence Length: 512 tokens
  • Supported Backends: TensorFlow, PyTorch

馃 Ethical Considerations

  • Designed with fairness in mind
  • Transparent about model capabilities
  • Ongoing work to reduce potential biases

馃摎 Citation

@misc{conversational-ai-model,
  title={Conversational AI Base Model},
  author={Niladri Das},
  year={2025},
  url={https://huggingface.co./bniladridas/conversational-ai-base-model}
}

馃摓 Contact


Last Updated: February 2025