bhagasra-saurav's picture
update model card README.md
092edd0
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: bert-finetuned-char-classification-e15
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-char-classification-e15
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1233
- F1: 0.5572
- Roc Auc: 0.7345
- Accuracy: 0.3761
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 512
- eval_batch_size: 512
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
| 0.1881 | 1.2 | 500 | 0.1694 | 0.0104 | 0.5024 | 0.0007 |
| 0.1563 | 2.39 | 1000 | 0.1415 | 0.3037 | 0.5948 | 0.1221 |
| 0.1374 | 3.59 | 1500 | 0.1290 | 0.3997 | 0.6353 | 0.1958 |
| 0.127 | 4.78 | 2000 | 0.1231 | 0.4467 | 0.6579 | 0.2376 |
| 0.1194 | 5.98 | 2500 | 0.1188 | 0.4801 | 0.6748 | 0.2665 |
| 0.1114 | 7.18 | 3000 | 0.1183 | 0.5071 | 0.6944 | 0.3016 |
| 0.1048 | 8.37 | 3500 | 0.1177 | 0.5202 | 0.7032 | 0.3216 |
| 0.0983 | 9.57 | 4000 | 0.1172 | 0.5344 | 0.7123 | 0.3371 |
| 0.0917 | 10.77 | 4500 | 0.1164 | 0.5414 | 0.7175 | 0.3458 |
| 0.0852 | 11.96 | 5000 | 0.1175 | 0.5495 | 0.7240 | 0.3580 |
| 0.0787 | 13.16 | 5500 | 0.1226 | 0.5545 | 0.7328 | 0.3742 |
| 0.0738 | 14.35 | 6000 | 0.1233 | 0.5572 | 0.7345 | 0.3761 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3