Bespoke-Stratos-32B / README.md
ryanmarten's picture
Update README.md
d96f794 verified
metadata
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2.5-32B-Instruct
tags:
  - llama-factory
  - full
  - generated_from_trainer
model-index:
  - name: original
    results: []
language:
  - en
datasets:
  - bespokelabs/Bespoke-Stratos-17k

Model description

This model is a fine-tuned version of Qwen/Qwen2.5-32B-Instruct on the Bespoke-Stratos-17k dataset. The dataset is derived by distilling DeepSeek-R1 using the data pipeline of Berkeley NovaSky’s Sky-T1 with some modifications. More info in the dataset card at Bespoke-Stratos-17k. It outperforms Qwen-2.5-32B-Instruct on reasoning benchmarks:

Metric Bespoke-Stratos-32B Sky-T1-32B o1-preview DeepSeek-R1 DeepSeek-R1-Distill-Qwen-32B (Ours // Reported)
AIME2024 63.3 43.3 40.0 79.8 66.7 // 72.6
MATH500 93.0 82.4 81.4 97.3 89.8 // 94.3
GPQA-Diamond 58.1 56.8 75.2 71.5 61.1 // 62.1
LCB v2 Easy 96.7 86.3 92.9 - 91.2 // -
LCB v2 Medium 75.2 56.8 54.9 - 75.7 // -
LCB v2 Hard 26.2 17.9 16.3 - 38.2 // -
LCB v2 All 71.1 57.9 59.1 - 72.2 // -

Intended uses & limitations

Apache 2.0 License

Training procedure

We used 8xH100 to train the model for 27 hours.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 96
  • total_eval_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3.0

Training results

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3