Cheese_X_ray

This model is a fine-tuned version of barghavani/Cheese_xray on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1890
  • Accuracy: 0.9381

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5579 0.9882 63 0.5524 0.7062
0.4491 1.9922 127 0.4218 0.7062
0.3646 2.9961 191 0.3928 0.7440
0.3419 4.0 255 0.3827 0.8110
0.3546 4.9882 318 0.3530 0.8608
0.3745 5.9922 382 0.3298 0.8814
0.3323 6.9961 446 0.3022 0.8952
0.3125 8.0 510 0.2750 0.9089
0.2663 8.9882 573 0.2648 0.8883
0.2672 9.9922 637 0.2476 0.9038
0.2492 10.9961 701 0.2354 0.9278
0.2297 12.0 765 0.2272 0.9175
0.1915 12.9882 828 0.2126 0.9107
0.2071 13.9922 892 0.2006 0.9227
0.2251 14.9961 956 0.1806 0.9244
0.1979 16.0 1020 0.1900 0.9347
0.1969 16.9882 1083 0.2081 0.9192
0.2 17.9922 1147 0.2037 0.9175
0.2082 18.9961 1211 0.2108 0.9175
0.1838 19.7647 1260 0.1688 0.9330

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
38
Safetensors
Model size
23.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for barghavani/Cheese_X_ray

Unable to build the model tree, the base model loops to the model itself. Learn more.