lillian039's picture
End of training
c852083 verified
metadata
base_model: barc0/cot-400k-barc-llama3.1-8b-ins-fft-transduction_lr1e-5_epoch3
datasets:
  - barc0/cot_train_dataset_960_ms10_v2
  - barc0/cot_rearc_dataset_100_ms10
library_name: peft
license: llama3.1
tags:
  - alignment-handbook
  - trl
  - sft
  - generated_from_trainer
model-index:
  - name: cot-trainset-ft-transduction-v2-lora-train
    results: []

cot-trainset-ft-transduction-v2-lora-train

This model is a fine-tuned version of barc0/cot-400k-barc-llama3.1-8b-ins-fft-transduction_lr1e-5_epoch3 on the barc0/cot_train_dataset_960_ms10_v2 and the barc0/cot_rearc_dataset_100_ms10 datasets. It achieves the following results on the evaluation set:

  • Loss: 0.1333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
0.1018 0.9982 277 0.1238
0.0822 1.9964 554 0.1333

Framework versions

  • PEFT 0.12.0
  • Transformers 4.45.0.dev0
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1