metadata
base_model: balrogbob/open_llama_3b_v2-python-instruct-0.1
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
- llama-cpp
- gguf-my-repo
balrogbob/open_llama_3b_v2-python-instruct-0.1-IQ3_XXS-GGUF
This model was converted to GGUF format from balrogbob/open_llama_3b_v2-python-instruct-0.1
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Needs < /s > (minus spaces) as stop tag, some software works automatically, some (like LM Studio) need the stop tag added. Despite the alpaca training it still expects a bert style stop token.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo balrogbob/open_llama_3b_v2-python-instruct-0.1-IQ3_XXS-GGUF --hf-file open_llama_3b_v2-python-instruct-0.1-iq3_xxs-imat.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo balrogbob/open_llama_3b_v2-python-instruct-0.1-IQ3_XXS-GGUF --hf-file open_llama_3b_v2-python-instruct-0.1-iq3_xxs-imat.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo balrogbob/open_llama_3b_v2-python-instruct-0.1-IQ3_XXS-GGUF --hf-file open_llama_3b_v2-python-instruct-0.1-iq3_xxs-imat.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo balrogbob/open_llama_3b_v2-python-instruct-0.1-IQ3_XXS-GGUF --hf-file open_llama_3b_v2-python-instruct-0.1-iq3_xxs-imat.gguf -c 2048