|
--- |
|
license: apache-2.0 |
|
base_model: bert-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- sem_eval_2018_task_1 |
|
metrics: |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: bert-finetuned-sem_eval-english |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: sem_eval_2018_task_1 |
|
type: sem_eval_2018_task_1 |
|
config: subtask5.english |
|
split: validation |
|
args: subtask5.english |
|
metrics: |
|
- name: F1 |
|
type: f1 |
|
value: 0.7075236671649229 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.28555304740406323 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-finetuned-sem_eval-english |
|
|
|
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the sem_eval_2018_task_1 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3008 |
|
- F1: 0.7075 |
|
- Roc Auc: 0.8000 |
|
- Accuracy: 0.2856 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| |
|
| 0.3964 | 1.0 | 855 | 0.3197 | 0.6852 | 0.7849 | 0.2810 | |
|
| 0.2788 | 2.0 | 1710 | 0.3039 | 0.7049 | 0.7978 | 0.2912 | |
|
| 0.2347 | 3.0 | 2565 | 0.3008 | 0.7075 | 0.8000 | 0.2856 | |
|
| 0.2094 | 4.0 | 3420 | 0.3091 | 0.7041 | 0.7976 | 0.2856 | |
|
| 0.1886 | 5.0 | 4275 | 0.3122 | 0.7068 | 0.8011 | 0.2810 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.3 |
|
- Pytorch 2.0.1 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|