model
#8
by
bzxlZhou
- opened
- README.md +5 -44
- configuration_baichuan.py +1 -1
- handler.py +0 -23
- tokenization_baichuan.py +5 -7
README.md
CHANGED
@@ -19,7 +19,6 @@ tasks:
|
|
19 |
<a href="https://github.com/baichuan-inc/Baichuan2" target="_blank">🦉GitHub</a> | <a href="https://github.com/baichuan-inc/Baichuan-7B/blob/main/media/wechat.jpeg?raw=true" target="_blank">💬WeChat</a>
|
20 |
</div>
|
21 |
<div align="center">
|
22 |
-
百川API支持搜索增强和192K长窗口,新增百川搜索增强知识库、限时免费!<br>
|
23 |
🚀 <a href="https://www.baichuan-ai.com/" target="_blank">百川大模型在线对话平台</a> 已正式向公众开放 🎉
|
24 |
</div>
|
25 |
|
@@ -28,13 +27,8 @@ tasks:
|
|
28 |
- [📖 模型介绍/Introduction](#Introduction)
|
29 |
- [⚙️ 快速开始/Quick Start](#Start)
|
30 |
- [📊 Benchmark评估/Benchmark Evaluation](#Benchmark)
|
31 |
-
- [👥 社区与生态/Community](#Community)
|
32 |
- [📜 声明与协议/Terms and Conditions](#Terms)
|
33 |
|
34 |
-
# 更新/Update
|
35 |
-
[2023.12.29] 🎉🎉🎉 我们发布了 **[Baichuan2-13B-Chat](https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat) v2** 版本。其中:
|
36 |
-
- 大幅提升了模型的综合能力,特别是数学和逻辑推理、复杂指令跟随能力。
|
37 |
-
- 使用时需指定revision=v2.0,详细方法参考[快速开始](#Start)
|
38 |
|
39 |
# <span id="Introduction">模型介绍/Introduction</span>
|
40 |
|
@@ -64,16 +58,9 @@ In the Baichuan 2 series models, we have utilized the new feature `F.scaled_dot_
|
|
64 |
import torch
|
65 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
66 |
from transformers.generation.utils import GenerationConfig
|
67 |
-
tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan2-13B-Chat",
|
68 |
-
|
69 |
-
|
70 |
-
trust_remote_code=True)
|
71 |
-
model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan2-13B-Chat",
|
72 |
-
revision="v2.0",
|
73 |
-
device_map="auto",
|
74 |
-
torch_dtype=torch.bfloat16,
|
75 |
-
trust_remote_code=True)
|
76 |
-
model.generation_config = GenerationConfig.from_pretrained("baichuan-inc/Baichuan2-13B-Chat", revision="v2.0")
|
77 |
messages = []
|
78 |
messages.append({"role": "user", "content": "解释一下“温故而知新”"})
|
79 |
response = model.chat(tokenizer, messages)
|
@@ -82,7 +69,6 @@ print(response)
|
|
82 |
|
83 |
这句话鼓励我们在学习和生活中不断地回顾和反思过去的经验,从而获得新的启示和成长。通过重温旧的知识和经历,我们可以发现新的观点和理解,从而更好地应对不断变化的世界和挑战。
|
84 |
```
|
85 |
-
**注意:如需使用老版本,需手动指定revision参数,设置revision=v1.0**
|
86 |
|
87 |
# <span id="Benchmark">Benchmark 结果/Benchmark Evaluation</span>
|
88 |
|
@@ -129,16 +115,6 @@ In addition to the [Baichuan2-7B-Base](https://huggingface.co/baichuan-inc/Baich
|
|
129 |
|
130 |
![checkpoint](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/resolve/main/checkpoints.jpeg)
|
131 |
|
132 |
-
# <span id="Community">社区与生态/Community</span>
|
133 |
-
|
134 |
-
## Intel 酷睿 Ultra 平台运行百川大模型
|
135 |
-
|
136 |
-
使用酷睿™/至强® 可扩展处理器或配合锐炫™ GPU等进行部署[Baichuan2-7B-Chat],[Baichuan2-13B-Chat]模型,推荐使用 BigDL-LLM([CPU], [GPU])以发挥更好推理性能。
|
137 |
-
|
138 |
-
详细支持信息可参考[中文操作手册](https://github.com/intel-analytics/bigdl-llm-tutorial/tree/main/Chinese_Version),包括用notebook支持,[加载,优化,保存方法](https://github.com/intel-analytics/bigdl-llm-tutorial/blob/main/Chinese_Version/ch_3_AppDev_Basic/3_BasicApp.ipynb)等。
|
139 |
-
|
140 |
-
When deploy on Core™/Xeon® Scalable Processors or with Arc™ GPU, BigDL-LLM ([CPU], [GPU]) is recommended to take full advantage of better inference performance.
|
141 |
-
|
142 |
# <span id="Terms">声明与协议/Terms and Conditions</span>
|
143 |
|
144 |
## 声明
|
@@ -156,21 +132,9 @@ We have done our best to ensure the compliance of the data used in the model tra
|
|
156 |
|
157 |
## 协议
|
158 |
|
159 |
-
|
160 |
-
1. 您或您的关联方的服务或产品的日均用户活跃量(DAU)低于100万。
|
161 |
-
2. 您或您的关联方不是软件服务提供商、云服务提供商。
|
162 |
-
3. 您或您的关联方不存在将授予您的商用许可,未经百川许可二次授权给其他第三方的可能。
|
163 |
-
|
164 |
-
在符合以上条件的前提下,您需要通过以下联系邮箱 [email protected] ,提交《Baichuan 2 模型社区许可协议》要求的申请材料。审核通过后,百川将特此授予您一个非排他性、全球性、不可转让、不可再许可、可撤销的商用版权许可。
|
165 |
-
|
166 |
-
The community usage of Baichuan 2 model requires adherence to [Apache 2.0](https://github.com/baichuan-inc/Baichuan2/blob/main/LICENSE) and [Community License for Baichuan2 Model](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/resolve/main/Baichuan%202%E6%A8%A1%E5%9E%8B%E7%A4%BE%E5%8C%BA%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf). The Baichuan 2 model supports commercial use. If you plan to use the Baichuan 2 model or its derivatives for commercial purposes, please ensure that your entity meets the following conditions:
|
167 |
-
|
168 |
-
1. The Daily Active Users (DAU) of your or your affiliate's service or product is less than 1 million.
|
169 |
-
2. Neither you nor your affiliates are software service providers or cloud service providers.
|
170 |
-
3. There is no possibility for you or your affiliates to grant the commercial license given to you, to reauthorize it to other third parties without Baichuan's permission.
|
171 |
-
|
172 |
-
Upon meeting the above conditions, you need to submit the application materials required by the Baichuan 2 Model Community License Agreement via the following contact email: [email protected]. Once approved, Baichuan will hereby grant you a non-exclusive, global, non-transferable, non-sublicensable, revocable commercial copyright license.
|
173 |
|
|
|
174 |
|
175 |
[GitHub]:https://github.com/baichuan-inc/Baichuan2
|
176 |
[Baichuan2]:https://github.com/baichuan-inc/Baichuan2
|
@@ -198,6 +162,3 @@ Upon meeting the above conditions, you need to submit the application materials
|
|
198 |
[[email protected]]: mailto:[email protected]
|
199 |
[训练过程heckpoint下载]: https://huggingface.co/baichuan-inc/Baichuan2-7B-Intermediate-Checkpoints
|
200 |
[百川智能]: https://www.baichuan-ai.com
|
201 |
-
|
202 |
-
[CPU]: https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan2
|
203 |
-
[GPU]: https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Model/baichuan2
|
|
|
19 |
<a href="https://github.com/baichuan-inc/Baichuan2" target="_blank">🦉GitHub</a> | <a href="https://github.com/baichuan-inc/Baichuan-7B/blob/main/media/wechat.jpeg?raw=true" target="_blank">💬WeChat</a>
|
20 |
</div>
|
21 |
<div align="center">
|
|
|
22 |
🚀 <a href="https://www.baichuan-ai.com/" target="_blank">百川大模型在线对话平台</a> 已正式向公众开放 🎉
|
23 |
</div>
|
24 |
|
|
|
27 |
- [📖 模型介绍/Introduction](#Introduction)
|
28 |
- [⚙️ 快速开始/Quick Start](#Start)
|
29 |
- [📊 Benchmark评估/Benchmark Evaluation](#Benchmark)
|
|
|
30 |
- [📜 声明与协议/Terms and Conditions](#Terms)
|
31 |
|
|
|
|
|
|
|
|
|
32 |
|
33 |
# <span id="Introduction">模型介绍/Introduction</span>
|
34 |
|
|
|
58 |
import torch
|
59 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
60 |
from transformers.generation.utils import GenerationConfig
|
61 |
+
tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan2-13B-Chat", use_fast=False, trust_remote_code=True)
|
62 |
+
model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan2-13B-Chat", device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)
|
63 |
+
model.generation_config = GenerationConfig.from_pretrained("baichuan-inc/Baichuan2-13B-Chat")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
messages = []
|
65 |
messages.append({"role": "user", "content": "解释一下“温故而知新”"})
|
66 |
response = model.chat(tokenizer, messages)
|
|
|
69 |
|
70 |
这句话鼓励我们在学习和生活中不断地回顾和反思过去的经验,从而获得新的启示和成长。通过重温旧的知识和经历,我们可以发现新的观点和理解,从而更好地应对不断变化的世界和挑战。
|
71 |
```
|
|
|
72 |
|
73 |
# <span id="Benchmark">Benchmark 结果/Benchmark Evaluation</span>
|
74 |
|
|
|
115 |
|
116 |
![checkpoint](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/resolve/main/checkpoints.jpeg)
|
117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
# <span id="Terms">声明与协议/Terms and Conditions</span>
|
119 |
|
120 |
## 声明
|
|
|
132 |
|
133 |
## 协议
|
134 |
|
135 |
+
Baichuan 2 模型的社区使用需遵循[《Baichuan 2 模型社区许可协议》]。Baichuan 2 支持商用。如果将 Baichuan 2 模型或其衍生品用作商业用途,请您按照如下方式联系许可方,以进行登记并向许可方申请书面授权:联系邮箱 [[email protected]]。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
+
The use of the source code in this repository follows the open-source license Apache 2.0. Community use of the Baichuan 2 model must adhere to the [Community License for Baichuan 2 Model](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Baichuan%202%E6%A8%A1%E5%9E%8B%E7%A4%BE%E5%8C%BA%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf). Baichuan 2 supports commercial use. If you are using the Baichuan 2 models or their derivatives for commercial purposes, please contact the licensor in the following manner for registration and to apply for written authorization: Email [email protected].
|
138 |
|
139 |
[GitHub]:https://github.com/baichuan-inc/Baichuan2
|
140 |
[Baichuan2]:https://github.com/baichuan-inc/Baichuan2
|
|
|
162 |
[[email protected]]: mailto:[email protected]
|
163 |
[训练过程heckpoint下载]: https://huggingface.co/baichuan-inc/Baichuan2-7B-Intermediate-Checkpoints
|
164 |
[百川智能]: https://www.baichuan-ai.com
|
|
|
|
|
|
configuration_baichuan.py
CHANGED
@@ -9,7 +9,7 @@ class BaichuanConfig(PretrainedConfig):
|
|
9 |
|
10 |
def __init__(
|
11 |
self,
|
12 |
-
vocab_size=
|
13 |
hidden_size=5120,
|
14 |
intermediate_size=13696,
|
15 |
num_hidden_layers=40,
|
|
|
9 |
|
10 |
def __init__(
|
11 |
self,
|
12 |
+
vocab_size=64000,
|
13 |
hidden_size=5120,
|
14 |
intermediate_size=13696,
|
15 |
num_hidden_layers=40,
|
handler.py
DELETED
@@ -1,23 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from typing import Dict, List, Any
|
3 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
4 |
-
from transformers.generation.utils import GenerationConfig
|
5 |
-
|
6 |
-
# get dtype
|
7 |
-
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
|
8 |
-
|
9 |
-
class EndpointHandler:
|
10 |
-
def __init__(self, path=""):
|
11 |
-
# load the model
|
12 |
-
self.model = AutoModelForCausalLM.from_pretrained(path, device_map="auto", torch_dtype=dtype, trust_remote_code=True)
|
13 |
-
self.model.generation_config = GenerationConfig.from_pretrained(path)
|
14 |
-
self.tokenizer = AutoTokenizer.from_pretrained(path, use_fast=False, trust_remote_code=True)
|
15 |
-
|
16 |
-
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
17 |
-
inputs = data.pop("inputs", data)
|
18 |
-
# ignoring parameters! Default to configs in generation_config.json.
|
19 |
-
messages = [{"role": "user", "content": inputs}]
|
20 |
-
response = self.model.chat(self.tokenizer, messages)
|
21 |
-
if torch.backends.mps.is_available():
|
22 |
-
torch.mps.empty_cache()
|
23 |
-
return [{'generated_text': response}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tokenization_baichuan.py
CHANGED
@@ -68,13 +68,6 @@ class BaichuanTokenizer(PreTrainedTokenizer):
|
|
68 |
if isinstance(pad_token, str)
|
69 |
else pad_token
|
70 |
)
|
71 |
-
|
72 |
-
self.vocab_file = vocab_file
|
73 |
-
self.add_bos_token = add_bos_token
|
74 |
-
self.add_eos_token = add_eos_token
|
75 |
-
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
76 |
-
self.sp_model.Load(vocab_file)
|
77 |
-
|
78 |
super().__init__(
|
79 |
bos_token=bos_token,
|
80 |
eos_token=eos_token,
|
@@ -86,6 +79,11 @@ class BaichuanTokenizer(PreTrainedTokenizer):
|
|
86 |
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
87 |
**kwargs,
|
88 |
)
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
def __getstate__(self):
|
91 |
state = self.__dict__.copy()
|
|
|
68 |
if isinstance(pad_token, str)
|
69 |
else pad_token
|
70 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
super().__init__(
|
72 |
bos_token=bos_token,
|
73 |
eos_token=eos_token,
|
|
|
79 |
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
80 |
**kwargs,
|
81 |
)
|
82 |
+
self.vocab_file = vocab_file
|
83 |
+
self.add_bos_token = add_bos_token
|
84 |
+
self.add_eos_token = add_eos_token
|
85 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
86 |
+
self.sp_model.Load(vocab_file)
|
87 |
|
88 |
def __getstate__(self):
|
89 |
state = self.__dict__.copy()
|