ayubkfupm's picture
End of training
0e4ea33 verified
metadata
license: apache-2.0
base_model: nielsr/swin-tiny-patch4-window7-224-finetuned-eurosat
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-wsdmhar
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9683195592286501

swin-tiny-patch4-window7-224-finetuned-wsdmhar

This model is a fine-tuned version of nielsr/swin-tiny-patch4-window7-224-finetuned-eurosat on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1444
  • Accuracy: 0.9683

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0624 1.0 53 0.8879 0.6092
0.6893 2.0 106 0.6601 0.7090
0.6152 3.0 159 0.5114 0.7855
0.5456 4.0 212 0.3819 0.8423
0.4673 5.0 265 0.3267 0.8719
0.4166 6.0 318 0.2804 0.9039
0.3757 7.0 371 0.2881 0.8994
0.3798 8.0 424 0.2635 0.9032
0.3303 9.0 477 0.2703 0.9074
0.3346 10.0 530 0.2565 0.9005
0.2971 11.0 583 0.2182 0.9311
0.2992 12.0 636 0.2240 0.9256
0.2637 13.0 689 0.2131 0.9239
0.2653 14.0 742 0.1801 0.9397
0.2472 15.0 795 0.1807 0.9377
0.2263 16.0 848 0.1612 0.9466
0.1786 17.0 901 0.1735 0.9418
0.2103 18.0 954 0.1786 0.9463
0.1725 19.0 1007 0.1631 0.9473
0.1787 20.0 1060 0.1439 0.9532
0.1924 21.0 1113 0.1388 0.9504
0.1662 22.0 1166 0.1470 0.9508
0.1724 23.0 1219 0.1538 0.9497
0.1633 24.0 1272 0.1731 0.9384
0.174 25.0 1325 0.1555 0.9539
0.1657 26.0 1378 0.1542 0.9494
0.1513 27.0 1431 0.1526 0.9508
0.126 28.0 1484 0.1560 0.9511
0.1508 29.0 1537 0.1607 0.9480
0.1368 30.0 1590 0.1729 0.9435
0.1166 31.0 1643 0.1555 0.9532
0.1076 32.0 1696 0.1400 0.9580
0.1189 33.0 1749 0.1419 0.9590
0.1512 34.0 1802 0.1364 0.9580
0.1323 35.0 1855 0.1497 0.9539
0.1031 36.0 1908 0.1437 0.9580
0.1215 37.0 1961 0.1460 0.9559
0.1069 38.0 2014 0.1362 0.9601
0.129 39.0 2067 0.1490 0.9590
0.1202 40.0 2120 0.1616 0.9545
0.1011 41.0 2173 0.1518 0.9570
0.1092 42.0 2226 0.1308 0.9618
0.1163 43.0 2279 0.1458 0.9590
0.1074 44.0 2332 0.1414 0.9549
0.0814 45.0 2385 0.1509 0.9580
0.0985 46.0 2438 0.1287 0.9628
0.0863 47.0 2491 0.1277 0.9625
0.0932 48.0 2544 0.1453 0.9559
0.0863 49.0 2597 0.1520 0.9566
0.0887 50.0 2650 0.1279 0.9656
0.0744 51.0 2703 0.1552 0.9566
0.0928 52.0 2756 0.1465 0.9621
0.0776 53.0 2809 0.1575 0.9583
0.088 54.0 2862 0.1614 0.9563
0.0909 55.0 2915 0.1312 0.9638
0.089 56.0 2968 0.1357 0.9652
0.0587 57.0 3021 0.1510 0.9614
0.0931 58.0 3074 0.1466 0.9580
0.0878 59.0 3127 0.1499 0.9590
0.0725 60.0 3180 0.1524 0.9597
0.0543 61.0 3233 0.1543 0.9583
0.0773 62.0 3286 0.1513 0.9635
0.0626 63.0 3339 0.1511 0.9601
0.0649 64.0 3392 0.1467 0.9594
0.0705 65.0 3445 0.1443 0.9590
0.0737 66.0 3498 0.1361 0.9607
0.0518 67.0 3551 0.1441 0.9594
0.0502 68.0 3604 0.1535 0.9590
0.0701 69.0 3657 0.1362 0.9663
0.0826 70.0 3710 0.1492 0.9611
0.0715 71.0 3763 0.1615 0.9625
0.0635 72.0 3816 0.1488 0.9642
0.0522 73.0 3869 0.1456 0.9621
0.0485 74.0 3922 0.1386 0.9645
0.0629 75.0 3975 0.1463 0.9632
0.0568 76.0 4028 0.1472 0.9621
0.0556 77.0 4081 0.1440 0.9659
0.0547 78.0 4134 0.1421 0.9635
0.0527 79.0 4187 0.1444 0.9683
0.054 80.0 4240 0.1464 0.9628
0.0641 81.0 4293 0.1491 0.9635
0.0546 82.0 4346 0.1529 0.9611
0.059 83.0 4399 0.1462 0.9652
0.0485 84.0 4452 0.1567 0.9632
0.0388 85.0 4505 0.1548 0.9621
0.0421 86.0 4558 0.1484 0.9621
0.0375 87.0 4611 0.1681 0.9597
0.0376 88.0 4664 0.1513 0.9632
0.0514 89.0 4717 0.1485 0.9642
0.0598 90.0 4770 0.1541 0.9638
0.0431 91.0 4823 0.1474 0.9628
0.0432 92.0 4876 0.1498 0.9645
0.0391 93.0 4929 0.1506 0.9645
0.0408 94.0 4982 0.1462 0.9642
0.0335 95.0 5035 0.1509 0.9652
0.0447 96.0 5088 0.1508 0.9635
0.0477 97.0 5141 0.1510 0.9635
0.0504 98.0 5194 0.1510 0.9642
0.0406 99.0 5247 0.1479 0.9649
0.0343 100.0 5300 0.1480 0.9645

Framework versions

  • Transformers 4.43.2
  • Pytorch 2.3.1+cu118
  • Datasets 2.20.0
  • Tokenizers 0.19.1