ayameRushia's picture
Update README.md
931fb2e
metadata
language:
  - id
license: apache-2.0
tags:
  - automatic-speech-recognition
  - mozilla-foundation/common_voice_8_0
  - generated_from_trainer
  - robust-speech-event
datasets:
  - common_voice
model-index:
  - name: XLS-R-300M - Indonesia
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 8
          type: mozilla-foundation/common_voice_8_0
          args: sv-SE
        metrics:
          - name: Test WER
            type: wer
            value: 38.098
          - name: Test CER
            type: cer
            value: 14.261

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - ID dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3975
  • Wer: 0.2633

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.78 100 4.5645 1.0
No log 1.55 200 2.9016 1.0
No log 2.33 300 2.2666 1.0982
No log 3.1 400 0.6079 0.6376
3.2188 3.88 500 0.4985 0.5008
3.2188 4.65 600 0.4477 0.4469
3.2188 5.43 700 0.3953 0.3915
3.2188 6.2 800 0.4319 0.3921
3.2188 6.98 900 0.4171 0.3698
0.2193 7.75 1000 0.3957 0.3600
0.2193 8.53 1100 0.3730 0.3493
0.2193 9.3 1200 0.3780 0.3348
0.2193 10.08 1300 0.4133 0.3568
0.2193 10.85 1400 0.3984 0.3193
0.1129 11.63 1500 0.3845 0.3174
0.1129 12.4 1600 0.3882 0.3162
0.1129 13.18 1700 0.3982 0.3008
0.1129 13.95 1800 0.3902 0.3198
0.1129 14.73 1900 0.4082 0.3237
0.0765 15.5 2000 0.3732 0.3126
0.0765 16.28 2100 0.3893 0.3001
0.0765 17.05 2200 0.4168 0.3083
0.0765 17.83 2300 0.4193 0.3044
0.0765 18.6 2400 0.4006 0.3013
0.0588 19.38 2500 0.3836 0.2892
0.0588 20.16 2600 0.3761 0.2903
0.0588 20.93 2700 0.3895 0.2930
0.0588 21.71 2800 0.3885 0.2791
0.0588 22.48 2900 0.3902 0.2891
0.0448 23.26 3000 0.4200 0.2849
0.0448 24.03 3100 0.4013 0.2799
0.0448 24.81 3200 0.4039 0.2731
0.0448 25.58 3300 0.3970 0.2647
0.0448 26.36 3400 0.4081 0.2690
0.0351 27.13 3500 0.4090 0.2674
0.0351 27.91 3600 0.3953 0.2663
0.0351 28.68 3700 0.4044 0.2650
0.0351 29.46 3800 0.3969 0.2646

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.17.1.dev0
  • Tokenizers 0.11.0