Jingya's picture
Jingya HF staff
Update README.md
92f9aad verified
metadata
license: openrail++

This checkkpoint is compiled by ByteDance/SDXL-Lightning for AWS Inf2.

Compilation

Download the unet checkpoint from ByteDance/SDXL-Lightning and replace the unet checkpoint under the original sdxl checkpoint:

from huggingface_hub import hf_hub_download

repo = "ByteDance/SDXL-Lightning"
ckpt = "sdxl_lightning_4step_unet.safetensors"
hf_hub_download(repo, ckpt)

Replace the unet:

cp /home/ubuntu/.cache/huggingface/hub/models--ByteDance--SDXL-Lightning/snapshots/xxxxxx/sdxl_lightning_4step_unet.safetensors stable-diffusion-xl-lightning/unet/diffusion_pytorch_model.safetensors

Compile the whole pipeline:

from optimum.neuron import NeuronStableDiffusionXLPipeline

model_id = "stable-diffusion-xl-lightning"
num_images_per_prompt = 1
input_shapes = {"batch_size": 1, "height": 1024, "width": 1024, "num_images_per_prompt": num_images_per_prompt}
compiler_args = {"auto_cast": "matmul", "auto_cast_type": "bf16"}

stable_diffusion = NeuronStableDiffusionXLPipeline.from_pretrained(
    model_id, export=True, **compiler_args, **input_shapes
)
save_directory = "sdxl_lightning_4_steps_neuronx/"
stable_diffusion.save_pretrained(save_directory)
# push to hub

Inference

from optimum.neuron import NeuronStableDiffusionXLPipeline
from diffusers import EulerDiscreteScheduler

pipe = NeuronStableDiffusionXLPipeline.from_pretrained("aws-neuron/SDXL-Lightning-4steps-neuronx")
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
pipe("A girl smiling", num_inference_steps=4, guidance_scale=0).images[0].save("output.png")