Edit model card

emotion_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2383
  • Accuracy: 0.6

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0769 1.0 10 2.0617 0.1812
2.0383 2.0 20 2.0104 0.3
1.9423 3.0 30 1.8932 0.425
1.7923 4.0 40 1.7442 0.475
1.6547 5.0 50 1.6047 0.4875
1.5297 6.0 60 1.5184 0.5437
1.4345 7.0 70 1.4392 0.5625
1.337 8.0 80 1.3847 0.5875
1.2722 9.0 90 1.3442 0.55
1.217 10.0 100 1.3058 0.5625
1.1497 11.0 110 1.2914 0.55
1.0977 12.0 120 1.2377 0.6125
1.0507 13.0 130 1.2253 0.5687
1.0268 14.0 140 1.2269 0.5938
0.967 15.0 150 1.2260 0.5938
0.9269 16.0 160 1.2421 0.5687
0.9102 17.0 170 1.2218 0.5687
0.8883 18.0 180 1.2207 0.5687
0.8633 19.0 190 1.1933 0.6062
0.8557 20.0 200 1.1830 0.575

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for awrysfab/emotion_classification

Finetuned
(1694)
this model

Evaluation results