GRAG Logo

GRAG-BGE-M3-TRIPLES-HESSIAN-AI

This is a sentence-transformers model trained on this Dataset with roughly 300k Triple-Samples. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. It was merged with the Base-Model BAAI/bge-m3 again to maintain performance on other languages again.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 1024 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Evaluation MTEB-Tasks

Classification

  • AmazonCounterfactualClassification
  • AmazonReviewsClassification
  • MassiveIntentClassification
  • MassiveScenarioClassification
  • MTOPDomainClassification
  • MTOPIntentClassification

Pair Classification

  • FalseFriendsGermanEnglish
  • PawsXPairClassification

Retrieval

  • GermanQuAD-Retrieval
  • GermanDPR

STS (Semantic Textual Similarity)

  • GermanSTSBenchmark

Comparison between Base-Model (BGE-M3), Finetuned Model (GRAG-BGE) and Merged Model with Base-Model (Merged-BGE)

TASK BGE-M3 GRAG-BGE Merged-BGE GRAG vs. BGE Merged vs. BGE
AmazonCounterfactualClassification 0.6908 0.5449 0.7111 -14.59% 2.03%
AmazonReviewsClassification 0.4634 0.2745 0.4571 -18.89% -0.63%
FalseFriendsGermanEnglish 0.5343 0.4777 0.5338 -5.67% -0.05%
GermanQuAD-Retrieval 0.9444 0.8714 0.9311 -7.30% -1.33%
GermanSTSBenchmark 0.8079 0.7921 0.8218 -1.58% 1.39%
MassiveIntentClassification 0.6575 0.4884 0.6522 -16.90% -0.52%
MassiveScenarioClassification 0.7355 0.5837 0.7381 -15.19% 0.25%
GermanDPR 0.8265 0.7210 0.8159 -10.54% -1.06%
MTOPDomainClassification 0.9121 0.7450 0.9139 -16.71% 0.17%
MTOPIntentClassification 0.6808 0.4516 0.6684 -22.92% -1.25%
PawsXPairClassification 0.5678 0.5077 0.5710 -6.01% 0.33%

Comparison between Base-Model (BGE-M3), Merged Model with Base-Model (Merged-BGE) and our Merged-Model merged with Snowflake/snowflake-arctic-embed-l-v2.0

TASK BGE-M3 Merged-BGE Merged-Snowflake Merged-BGE vs. BGE Merged-Snowflake vs. BGE Merged-Snowflake vs. Merged-BGE
AmazonCounterfactualClassification 0.6908 0.7111 0.7152 2.94% 3.53% 0.58%
AmazonReviewsClassification 0.4634 0.4571 0.4577 -1.36% -1.23% 0.13%
FalseFriendsGermanEnglish 0.5343 0.5338 0.5378 -0.09% 0.66% 0.75%
GermanQuAD-Retrieval 0.9444 0.9311 0.9456 -1.41% 0.13% 1.56%
GermanSTSBenchmark 0.8079 0.8218 0.8558 1.72% 5.93% 4.14%
MassiveIntentClassification 0.6575 0.6522 0.6826 -0.81% 3.82% 4.66%
MassiveScenarioClassification 0.7355 0.7381 0.7494 0.35% 1.89% 1.53%
GermanDPR 0.8265 0.8159 0.8330 -1.28% 0.79% 2.10%
MTOPDomainClassification 0.9121 0.9139 0.9259 0.20% 1.52% 1.31%
MTOPIntentClassification 0.6808 0.6684 0.7143 -1.82% 4.91% 6.87%
PawsXPairClassification 0.5678 0.5710 0.5803 0.56% 2.18% 1.63%

Evaluation on GRAG-EMBEDDING-BENCHMARK

Accuracy is calculated by evaluating if the relevant context is the highest ranking embedding of the whole context array. See Eval-Dataset and Evaluation Code here

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("avemio/GRAG-BGE-M3-TRIPLES-HESSIAN-AI")
# Run inference
sentences = [
    'The weather is lovely today.',
    "It's so sunny outside!",
    'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.2.1
  • Transformers: 4.44.2
  • PyTorch: 2.4.1+cu121
  • Accelerate: 0.34.2
  • Datasets: 3.0.1
  • Tokenizers: 0.19.1

Citation

@misc{bge-m3,
      title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation}, 
      author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
      year={2024},
      eprint={2402.03216},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Downloads last month
32
Safetensors
Model size
568M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for avemio/GRAG-BGE-M3-TRIPLES-HESSIAN-AI

Base model

BAAI/bge-m3
Finetuned
(192)
this model
Merges
1 model

Dataset used to train avemio/GRAG-BGE-M3-TRIPLES-HESSIAN-AI

Collection including avemio/GRAG-BGE-M3-TRIPLES-HESSIAN-AI