Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/Mistral-Nemo-Instruct-2407
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - f272d20c00ec8efb_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/f272d20c00ec8efb_train_data.json
  type:
    field_input: Doctor
    field_instruction: Patient
    field_output: Description
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: auxyus/36ba7646-3ced-4330-b447-98b10ba84364
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
  0: 75GB
max_steps: 400
micro_batch_size: 8
mlflow_experiment_name: /tmp/f272d20c00ec8efb_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1.0e-05
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: a9074197-bc46-4d2b-80f1-d52442977823
wandb_project: Gradients-On-Two
wandb_run: your_name
wandb_runid: a9074197-bc46-4d2b-80f1-d52442977823
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

36ba7646-3ced-4330-b447-98b10ba84364

This model is a fine-tuned version of unsloth/Mistral-Nemo-Instruct-2407 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1260

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 400

Training results

Training Loss Epoch Step Validation Loss
10.0868 0.0001 1 3.0112
4.664 0.0066 50 1.2879
3.8686 0.0131 100 1.2358
4.462 0.0197 150 1.1943
3.8276 0.0262 200 1.1873
3.8837 0.0328 250 1.1560
3.8802 0.0393 300 1.1402
3.5859 0.0459 350 1.1269
4.9886 0.0525 400 1.1260

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
6
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for auxyus/36ba7646-3ced-4330-b447-98b10ba84364

Adapter
(266)
this model