pure-qwen2-0.5b / configuration_pure_qwen2.py
yangwang825's picture
Upload config
215ec09 verified
from transformers import PretrainedConfig
from transformers.utils import logging
from transformers.modeling_rope_utils import rope_config_validation
logger = logging.get_logger(__name__)
class PureQwen2Config(PretrainedConfig):
model_type = "pure_qwen2"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=151936,
hidden_size=4096,
intermediate_size=22016,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=32,
hidden_act="silu",
max_position_embeddings=32768,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
use_sliding_window=False,
sliding_window=4096,
max_window_layers=28,
attention_dropout=0.0,
svd_rank=5, # A slightly overestimated rank of token embedding matrix
num_pc_to_remove=1, # Number of principal component to remove
center=False, # If True, centre the input token embedding matrix
num_iters=2, # Number of subspace iterations to conduct
alpha=1, # Feature expression factor in parameter-free self-attention module
disable_pcr=False,
disable_pfsa=False,
disable_covariance=True,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.use_sliding_window = use_sliding_window
self.sliding_window = sliding_window if use_sliding_window else None
self.max_window_layers = max_window_layers
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_dropout = attention_dropout
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, move it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
self.svd_rank = svd_rank
self.num_pc_to_remove = num_pc_to_remove
self.center = center
self.num_iters = num_iters
self.alpha = alpha
self.disable_pcr = disable_pcr
self.disable_pfsa = disable_pfsa
self.disable_covariance = disable_covariance
super().__init__(
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)